Spaces:
Sleeping
Sleeping
File size: 2,224 Bytes
f1586e3 f91cc3b f1586e3 f91cc3b f1586e3 f91cc3b f1586e3 f91cc3b 13a46cd db03170 13a46cd f91cc3b 13a46cd f91cc3b 99637f2 f1586e3 f91cc3b f1586e3 f91cc3b f1586e3 99637f2 f1586e3 f91cc3b f1586e3 f91cc3b f1586e3 f91cc3b f1586e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import streamlit as st
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
import faiss
import os
from datasets import load_from_disk
# Title
st.title("AMA Austim 🧩")
# Input: Query
query = st.text_input("Please ask me anything about autism ✨")
# Load or create RAG dataset
def load_rag_dataset(dataset_dir="rag_dataset"):
if not os.path.exists(dataset_dir):
# Import the build function from the other file
import faiss_index.index as faiss_index_index
# Fetch some initial papers to build the index
initial_papers = faiss_index_index.fetch_arxiv_papers("autism research", max_results=100)
dataset_dir = faiss_index_index.build_faiss_index(initial_papers, dataset_dir)
# Load the dataset and index
dataset = load_from_disk(os.path.join(dataset_dir, "dataset"))
index = faiss.read_index(os.path.join(dataset_dir, "embeddings.faiss"))
return dataset, index
# RAG Pipeline
def rag_pipeline(query, dataset, index):
# Load pre-trained RAG model and configure retriever
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
retriever = RagRetriever.from_pretrained(
"facebook/rag-sequence-nq",
index_name="custom",
passages_path=os.path.join("rag_dataset", "dataset"),
index_path=os.path.join("rag_dataset", "embeddings.faiss")
)
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever)
# Generate answer using RAG
inputs = tokenizer(query, return_tensors="pt")
generated_ids = model.generate(inputs["input_ids"])
answer = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return answer
# Run the app
if query:
st.write("Loading or creating RAG dataset...")
dataset, index = load_rag_dataset()
st.write("Running RAG pipeline...")
answer = rag_pipeline(query, dataset, index)
st.write("### Answer:")
st.write(answer)
st.write("### Retrieved Papers:")
for i in range(min(5, len(dataset))):
st.write(f"**Title:** {dataset[i]['title']}")
st.write(f"**Summary:** {dataset[i]['text'][:200]}...")
st.write("---") |