File size: 2,224 Bytes
f1586e3
 
 
f91cc3b
 
f1586e3
 
f91cc3b
f1586e3
 
f91cc3b
f1586e3
f91cc3b
 
 
13a46cd
db03170
13a46cd
 
 
f91cc3b
13a46cd
f91cc3b
 
 
 
 
99637f2
f1586e3
f91cc3b
 
f1586e3
f91cc3b
 
 
 
 
 
f1586e3
 
 
 
 
 
 
99637f2
f1586e3
 
 
f91cc3b
 
 
f1586e3
f91cc3b
f1586e3
 
 
 
f91cc3b
 
 
 
f1586e3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import streamlit as st
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
import faiss
import os
from datasets import load_from_disk

# Title
st.title("AMA Austim 🧩")

# Input: Query
query = st.text_input("Please ask me anything about autism ✨")

# Load or create RAG dataset
def load_rag_dataset(dataset_dir="rag_dataset"):
    if not os.path.exists(dataset_dir):
        # Import the build function from the other file
        import faiss_index.index as faiss_index_index
        
        # Fetch some initial papers to build the index
        initial_papers = faiss_index_index.fetch_arxiv_papers("autism research", max_results=100)
        dataset_dir = faiss_index_index.build_faiss_index(initial_papers, dataset_dir)
    
    # Load the dataset and index
    dataset = load_from_disk(os.path.join(dataset_dir, "dataset"))
    index = faiss.read_index(os.path.join(dataset_dir, "embeddings.faiss"))
    
    return dataset, index

# RAG Pipeline
def rag_pipeline(query, dataset, index):
    # Load pre-trained RAG model and configure retriever
    tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
    retriever = RagRetriever.from_pretrained(
        "facebook/rag-sequence-nq",
        index_name="custom",
        passages_path=os.path.join("rag_dataset", "dataset"),
        index_path=os.path.join("rag_dataset", "embeddings.faiss")
    )
    model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever)

    # Generate answer using RAG
    inputs = tokenizer(query, return_tensors="pt")
    generated_ids = model.generate(inputs["input_ids"])
    answer = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

    return answer

# Run the app
if query:
    st.write("Loading or creating RAG dataset...")
    dataset, index = load_rag_dataset()
    
    st.write("Running RAG pipeline...")
    answer = rag_pipeline(query, dataset, index)

    st.write("### Answer:")
    st.write(answer)

    st.write("### Retrieved Papers:")
    for i in range(min(5, len(dataset))):
        st.write(f"**Title:** {dataset[i]['title']}")
        st.write(f"**Summary:** {dataset[i]['text'][:200]}...")
        st.write("---")