Spaces:
Sleeping
Sleeping
File size: 12,465 Bytes
f1586e3 e348a54 0f8445a 5a09d5c e348a54 4660a83 58be7e5 87866cd 5a09d5c 8108db5 f1586e3 4660a83 0452175 17a97cf 87866cd 58be7e5 87866cd f944585 87866cd 4660a83 87866cd 4660a83 87866cd 4660a83 87866cd 4660a83 87866cd 4660a83 87866cd 4660a83 97889da 4660a83 97889da 7842508 87866cd 4660a83 87866cd a47c92e 87866cd 17a97cf 87866cd 17a97cf 87866cd a47c92e 87866cd 17a97cf 87866cd 218a8a7 87866cd 17a97cf 87866cd 17a97cf 87866cd 17a97cf 87866cd 17a97cf 87866cd a47c92e 87866cd a47c92e 87866cd f1586e3 87866cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import streamlit as st
import pandas as pd
import torch
import logging
import os
from transformers import AutoTokenizer, T5ForConditionalGeneration
import arxiv
import requests
import xml.etree.ElementTree as ET
import re
from functools import lru_cache
from typing import List, Dict, Optional
from dataclasses import dataclass
from concurrent.futures import ThreadPoolExecutor
# Configure logging
logging.basicConfig(level=logging.INFO)
# Define data paths and constants
DATA_DIR = "/data" if os.path.exists("/data") else "."
DATASET_DIR = os.path.join(DATA_DIR, "rag_dataset")
DATASET_PATH = os.path.join(DATASET_DIR, "dataset")
MODEL_PATH = "google/flan-t5-small"
# Constants for better maintainability
MAX_ABSTRACT_LENGTH = 1000
MAX_PAPERS = 5
CACHE_SIZE = 128
@dataclass
class Paper:
title: str
abstract: str
url: str
published: str
relevance_score: float
class TextProcessor:
@staticmethod
def clean_text(text: str) -> str:
"""Clean and normalize text content with improved handling"""
if not text:
return ""
# Improved text cleaning
text = re.sub(r'[^\w\s.,;:()\-\'"]', ' ', text)
text = re.sub(r'\s+', ' ', text)
text = text.encode('ascii', 'ignore').decode('ascii') # Better character handling
return text.strip()
@staticmethod
def format_paper(title: str, abstract: str) -> str:
"""Format paper information with improved structure"""
title = TextProcessor.clean_text(title)
abstract = TextProcessor.clean_text(abstract)
if len(abstract) > MAX_ABSTRACT_LENGTH:
abstract = abstract[:MAX_ABSTRACT_LENGTH-3] + "..."
return f"""Title: {title}\nAbstract: {abstract}\n---"""
class ResearchFetcher:
def __init__(self):
self.session = requests.Session() # Reuse connection
@lru_cache(maxsize=CACHE_SIZE)
def fetch_arxiv_papers(self, query: str) -> List[Paper]:
"""Fetch papers from arXiv with improved filtering"""
client = arxiv.Client()
search_query = f"(ti:autism OR abs:autism) AND (ti:\"{query}\" OR abs:\"{query}\") AND cat:q-bio"
search = arxiv.Search(
query=search_query,
max_results=MAX_PAPERS,
sort_by=arxiv.SortCriterion.Relevance
)
papers = []
for result in client.results(search):
title_lower = result.title.lower()
summary_lower = result.summary.lower()
if any(term in title_lower or term in summary_lower
for term in ['autism', 'asd']):
papers.append(Paper(
title=result.title,
abstract=result.summary,
url=result.pdf_url,
published=result.published.strftime("%Y-%m-%d"),
relevance_score=1.0 if 'autism' in title_lower else 0.5
))
return papers
@lru_cache(maxsize=CACHE_SIZE)
def fetch_pubmed_papers(self, query: str) -> List[Paper]:
"""Fetch papers from PubMed with improved error handling"""
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils"
search_term = f"(autism[Title/Abstract] OR ASD[Title/Abstract]) AND ({query}[Title/Abstract])"
try:
# Fetch IDs efficiently
response = self.session.get(
f"{base_url}/esearch.fcgi",
params={
'db': 'pubmed',
'term': search_term,
'retmax': MAX_PAPERS,
'sort': 'relevance',
'retmode': 'xml'
},
timeout=10
)
response.raise_for_status()
root = ET.fromstring(response.content)
id_list = root.findall('.//Id')
if not id_list:
return []
# Fetch details in parallel
with ThreadPoolExecutor(max_workers=3) as executor:
paper_futures = [
executor.submit(self._fetch_paper_details, base_url, id_elem.text)
for id_elem in id_list
]
return [paper for future in paper_futures
for paper in [future.result()] if paper is not None]
except Exception as e:
logging.error(f"Error fetching PubMed papers: {str(e)}")
return []
def _fetch_paper_details(self, base_url: str, paper_id: str) -> Optional[Paper]:
"""Fetch individual paper details with timeout"""
try:
response = self.session.get(
f"{base_url}/efetch.fcgi",
params={
'db': 'pubmed',
'id': paper_id,
'retmode': 'xml'
},
timeout=5
)
response.raise_for_status()
article = ET.fromstring(response.content).find('.//PubmedArticle')
if article is None:
return None
title = article.find('.//ArticleTitle')
abstract = article.find('.//Abstract/AbstractText')
year = article.find('.//PubDate/Year')
if title is not None and abstract is not None:
title_text = title.text.lower()
abstract_text = abstract.text.lower()
if any(term in title_text or term in abstract_text
for term in ['autism', 'asd']):
return Paper(
title=title.text,
abstract=abstract.text,
url=f"https://pubmed.ncbi.nlm.nih.gov/{paper_id}/",
published=year.text if year is not None else 'Unknown',
relevance_score=1.0 if any(term in title_text
for term in ['autism', 'asd']) else 0.5
)
except Exception as e:
logging.error(f"Error fetching paper {paper_id}: {str(e)}")
return None
class ModelHandler:
def __init__(self):
self.model = None
self.tokenizer = None
@st.cache_resource
def load_model(self):
"""Load FLAN-T5 Small model with optimized settings"""
if self.model is None:
try:
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
self.model = T5ForConditionalGeneration.from_pretrained(
MODEL_PATH,
device_map={"": "cpu"},
torch_dtype=torch.float32,
low_cpu_mem_usage=True
)
return True
except Exception as e:
logging.error(f"Error loading model: {str(e)}")
return False
return True
def generate_answer(self, question: str, context: str, max_length: int = 512) -> str:
"""Generate answer with FLAN-T5 optimized parameters"""
if not self.load_model():
return "Error: Model loading failed. Please try again later."
try:
# FLAN-T5 responds better to direct instruction prompts
input_text = f"""Answer the following question about autism using the provided research context.
Research Context:
{context}
Question: {question}
Instructions:
- Be specific and evidence-based
- Use clear, accessible language
- Focus on practical implications
- Cite research when relevant
- Be respectful of neurodiversity
Answer:"""
inputs = self.tokenizer(
input_text,
return_tensors="pt",
max_length=1024,
truncation=True,
padding=True
)
with torch.inference_mode():
outputs = self.model.generate(
**inputs,
max_length=max_length,
min_length=100, # Reduzido para FLAN-T5 Small
num_beams=3, # Ajustado para melhor performance
length_penalty=1.0, # Mais neutro para respostas concisas
temperature=0.6, # Mais determinístico
repetition_penalty=1.2,
early_stopping=True,
no_repeat_ngram_size=2,
do_sample=True,
top_k=30,
top_p=0.92
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
response = TextProcessor.clean_text(response)
if len(response.strip()) < 50: # Ajustado para respostas mais curtas do FLAN-T5
return self._get_fallback_response()
return self._format_response(response)
except Exception as e:
logging.error(f"Error generating response: {str(e)}")
return "Error: Could not generate response. Please try again."
@staticmethod
def _get_fallback_response() -> str:
"""Provide a structured fallback response"""
return """Based on the available research, I cannot provide a specific answer to your question. However, I can suggest:
1. Try rephrasing your question to focus on specific aspects of autism
2. Consider asking about:
- Specific behaviors or characteristics
- Intervention strategies
- Research findings
- Support approaches
This will help me provide more accurate, research-based information."""
@staticmethod
def _format_response(response: str) -> str:
"""Format the response for better readability"""
# Add section headers
sections = response.split('\n\n')
formatted_sections = []
for i, section in enumerate(sections):
if i == 0:
formatted_sections.append(f"### Overview\n{section}")
elif i == len(sections) - 1:
formatted_sections.append(f"### Key Takeaways\n{section}")
else:
formatted_sections.append(section)
return '\n\n'.join(formatted_sections)
def main():
st.title("🧩 AMA Autism")
st.write("""
Ask questions about autism and get research-based answers from scientific papers.
For best results, be specific in your questions.
""")
query = st.text_input("What would you like to know about autism? ✨")
if query:
with st.status("Researching your question...") as status:
# Initialize handlers
research_fetcher = ResearchFetcher()
model_handler = ModelHandler()
# Fetch papers concurrently
with ThreadPoolExecutor(max_workers=2) as executor:
arxiv_future = executor.submit(research_fetcher.fetch_arxiv_papers, query)
pubmed_future = executor.submit(research_fetcher.fetch_pubmed_papers, query)
papers = arxiv_future.result() + pubmed_future.result()
if not papers:
st.warning("No relevant research papers found. Please try a different search term.")
return
# Sort papers by relevance
papers.sort(key=lambda x: x.relevance_score, reverse=True)
# Prepare context from top papers
context = "\n".join(
TextProcessor.format_paper(paper.title, paper.abstract)
for paper in papers[:3]
)
# Generate answer
st.write("Analyzing research papers...")
answer = model_handler.generate_answer(query, context)
# Display sources
with st.expander("📚 View source papers"):
for paper in papers:
st.markdown(f"- [{paper.title}]({paper.url}) ({paper.published})")
st.success("Research analysis complete!")
st.markdown(answer)
if __name__ == "__main__":
main() |