File size: 12,465 Bytes
f1586e3
e348a54
0f8445a
5a09d5c
e348a54
 
4660a83
 
 
58be7e5
87866cd
 
 
 
5a09d5c
 
8108db5
f1586e3
4660a83
0452175
 
 
17a97cf
87866cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58be7e5
87866cd
 
 
 
 
 
 
 
 
 
f944585
87866cd
 
 
4660a83
87866cd
 
 
 
 
4660a83
87866cd
 
 
 
 
4660a83
87866cd
 
 
 
 
 
 
 
 
 
 
 
 
 
4660a83
87866cd
 
 
 
 
 
 
4660a83
87866cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4660a83
 
97889da
4660a83
97889da
7842508
 
 
87866cd
 
 
 
 
 
 
 
 
 
4660a83
87866cd
 
 
 
 
 
 
 
a47c92e
87866cd
 
17a97cf
87866cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17a97cf
87866cd
 
a47c92e
87866cd
17a97cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87866cd
 
 
 
 
 
 
 
218a8a7
87866cd
 
 
 
17a97cf
 
 
 
 
87866cd
17a97cf
87866cd
17a97cf
 
87866cd
 
 
 
 
17a97cf
87866cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a47c92e
87866cd
 
 
 
 
 
 
a47c92e
87866cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1586e3
87866cd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import streamlit as st
import pandas as pd
import torch
import logging
import os
from transformers import AutoTokenizer, T5ForConditionalGeneration
import arxiv
import requests
import xml.etree.ElementTree as ET
import re
from functools import lru_cache
from typing import List, Dict, Optional
from dataclasses import dataclass
from concurrent.futures import ThreadPoolExecutor

# Configure logging
logging.basicConfig(level=logging.INFO)

# Define data paths and constants
DATA_DIR = "/data" if os.path.exists("/data") else "."
DATASET_DIR = os.path.join(DATA_DIR, "rag_dataset")
DATASET_PATH = os.path.join(DATASET_DIR, "dataset")
MODEL_PATH = "google/flan-t5-small"

# Constants for better maintainability
MAX_ABSTRACT_LENGTH = 1000
MAX_PAPERS = 5
CACHE_SIZE = 128

@dataclass
class Paper:
    title: str
    abstract: str
    url: str
    published: str
    relevance_score: float

class TextProcessor:
    @staticmethod
    def clean_text(text: str) -> str:
        """Clean and normalize text content with improved handling"""
        if not text:
            return ""
        
        # Improved text cleaning
        text = re.sub(r'[^\w\s.,;:()\-\'"]', ' ', text)
        text = re.sub(r'\s+', ' ', text)
        text = text.encode('ascii', 'ignore').decode('ascii')  # Better character handling
        
        return text.strip()

    @staticmethod
    def format_paper(title: str, abstract: str) -> str:
        """Format paper information with improved structure"""
        title = TextProcessor.clean_text(title)
        abstract = TextProcessor.clean_text(abstract)
        
        if len(abstract) > MAX_ABSTRACT_LENGTH:
            abstract = abstract[:MAX_ABSTRACT_LENGTH-3] + "..."
        
        return f"""Title: {title}\nAbstract: {abstract}\n---"""

class ResearchFetcher:
    def __init__(self):
        self.session = requests.Session()  # Reuse connection
    
    @lru_cache(maxsize=CACHE_SIZE)
    def fetch_arxiv_papers(self, query: str) -> List[Paper]:
        """Fetch papers from arXiv with improved filtering"""
        client = arxiv.Client()
        search_query = f"(ti:autism OR abs:autism) AND (ti:\"{query}\" OR abs:\"{query}\") AND cat:q-bio"
        
        search = arxiv.Search(
            query=search_query,
            max_results=MAX_PAPERS,
            sort_by=arxiv.SortCriterion.Relevance
        )
        
        papers = []
        for result in client.results(search):
            title_lower = result.title.lower()
            summary_lower = result.summary.lower()
            
            if any(term in title_lower or term in summary_lower 
                  for term in ['autism', 'asd']):
                papers.append(Paper(
                    title=result.title,
                    abstract=result.summary,
                    url=result.pdf_url,
                    published=result.published.strftime("%Y-%m-%d"),
                    relevance_score=1.0 if 'autism' in title_lower else 0.5
                ))
        
        return papers

    @lru_cache(maxsize=CACHE_SIZE)
    def fetch_pubmed_papers(self, query: str) -> List[Paper]:
        """Fetch papers from PubMed with improved error handling"""
        base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils"
        search_term = f"(autism[Title/Abstract] OR ASD[Title/Abstract]) AND ({query}[Title/Abstract])"
        
        try:
            # Fetch IDs efficiently
            response = self.session.get(
                f"{base_url}/esearch.fcgi",
                params={
                    'db': 'pubmed',
                    'term': search_term,
                    'retmax': MAX_PAPERS,
                    'sort': 'relevance',
                    'retmode': 'xml'
                },
                timeout=10
            )
            response.raise_for_status()
            
            root = ET.fromstring(response.content)
            id_list = root.findall('.//Id')
            
            if not id_list:
                return []
            
            # Fetch details in parallel
            with ThreadPoolExecutor(max_workers=3) as executor:
                paper_futures = [
                    executor.submit(self._fetch_paper_details, base_url, id_elem.text)
                    for id_elem in id_list
                ]
                
                return [paper for future in paper_futures 
                       for paper in [future.result()] if paper is not None]
            
        except Exception as e:
            logging.error(f"Error fetching PubMed papers: {str(e)}")
            return []

    def _fetch_paper_details(self, base_url: str, paper_id: str) -> Optional[Paper]:
        """Fetch individual paper details with timeout"""
        try:
            response = self.session.get(
                f"{base_url}/efetch.fcgi",
                params={
                    'db': 'pubmed',
                    'id': paper_id,
                    'retmode': 'xml'
                },
                timeout=5
            )
            response.raise_for_status()
            
            article = ET.fromstring(response.content).find('.//PubmedArticle')
            if article is None:
                return None
                
            title = article.find('.//ArticleTitle')
            abstract = article.find('.//Abstract/AbstractText')
            year = article.find('.//PubDate/Year')
            
            if title is not None and abstract is not None:
                title_text = title.text.lower()
                abstract_text = abstract.text.lower()
                
                if any(term in title_text or term in abstract_text 
                      for term in ['autism', 'asd']):
                    return Paper(
                        title=title.text,
                        abstract=abstract.text,
                        url=f"https://pubmed.ncbi.nlm.nih.gov/{paper_id}/",
                        published=year.text if year is not None else 'Unknown',
                        relevance_score=1.0 if any(term in title_text 
                                                 for term in ['autism', 'asd']) else 0.5
                    )
            
        except Exception as e:
            logging.error(f"Error fetching paper {paper_id}: {str(e)}")
            return None

class ModelHandler:
    def __init__(self):
        self.model = None
        self.tokenizer = None
        
    @st.cache_resource
    def load_model(self):
        """Load FLAN-T5 Small model with optimized settings"""
        if self.model is None:
            try:
                self.tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
                self.model = T5ForConditionalGeneration.from_pretrained(
                    MODEL_PATH,
                    device_map={"": "cpu"},
                    torch_dtype=torch.float32,
                    low_cpu_mem_usage=True
                )
                return True
            except Exception as e:
                logging.error(f"Error loading model: {str(e)}")
                return False
        return True

    def generate_answer(self, question: str, context: str, max_length: int = 512) -> str:
        """Generate answer with FLAN-T5 optimized parameters"""
        if not self.load_model():
            return "Error: Model loading failed. Please try again later."
        
        try:
            # FLAN-T5 responds better to direct instruction prompts
            input_text = f"""Answer the following question about autism using the provided research context.
                Research Context:
                {context}

                Question: {question}

                Instructions:
                - Be specific and evidence-based
                - Use clear, accessible language
                - Focus on practical implications
                - Cite research when relevant
                - Be respectful of neurodiversity

                Answer:"""
            
            inputs = self.tokenizer(
                input_text,
                return_tensors="pt",
                max_length=1024,
                truncation=True,
                padding=True
            )

            with torch.inference_mode():
                outputs = self.model.generate(
                    **inputs,
                    max_length=max_length,
                    min_length=100,  # Reduzido para FLAN-T5 Small
                    num_beams=3,     # Ajustado para melhor performance
                    length_penalty=1.0,  # Mais neutro para respostas concisas
                    temperature=0.6,     # Mais determinístico
                    repetition_penalty=1.2,
                    early_stopping=True,
                    no_repeat_ngram_size=2,
                    do_sample=True,
                    top_k=30,
                    top_p=0.92
                )

            response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
            response = TextProcessor.clean_text(response)
            
            if len(response.strip()) < 50:  # Ajustado para respostas mais curtas do FLAN-T5
                return self._get_fallback_response()
            
            return self._format_response(response)
            
        except Exception as e:
            logging.error(f"Error generating response: {str(e)}")
            return "Error: Could not generate response. Please try again."

    @staticmethod
    def _get_fallback_response() -> str:
        """Provide a structured fallback response"""
        return """Based on the available research, I cannot provide a specific answer to your question. However, I can suggest:

1. Try rephrasing your question to focus on specific aspects of autism
2. Consider asking about:
   - Specific behaviors or characteristics
   - Intervention strategies
   - Research findings
   - Support approaches

This will help me provide more accurate, research-based information."""

    @staticmethod
    def _format_response(response: str) -> str:
        """Format the response for better readability"""
        # Add section headers
        sections = response.split('\n\n')
        formatted_sections = []
        
        for i, section in enumerate(sections):
            if i == 0:
                formatted_sections.append(f"### Overview\n{section}")
            elif i == len(sections) - 1:
                formatted_sections.append(f"### Key Takeaways\n{section}")
            else:
                formatted_sections.append(section)
        
        return '\n\n'.join(formatted_sections)

def main():
    st.title("🧩 AMA Autism")
    st.write("""
    Ask questions about autism and get research-based answers from scientific papers.
    For best results, be specific in your questions.
    """)

    query = st.text_input("What would you like to know about autism? ✨")

    if query:
        with st.status("Researching your question...") as status:
            # Initialize handlers
            research_fetcher = ResearchFetcher()
            model_handler = ModelHandler()
            
            # Fetch papers concurrently
            with ThreadPoolExecutor(max_workers=2) as executor:
                arxiv_future = executor.submit(research_fetcher.fetch_arxiv_papers, query)
                pubmed_future = executor.submit(research_fetcher.fetch_pubmed_papers, query)
                
                papers = arxiv_future.result() + pubmed_future.result()
            
            if not papers:
                st.warning("No relevant research papers found. Please try a different search term.")
                return
            
            # Sort papers by relevance
            papers.sort(key=lambda x: x.relevance_score, reverse=True)
            
            # Prepare context from top papers
            context = "\n".join(
                TextProcessor.format_paper(paper.title, paper.abstract)
                for paper in papers[:3]
            )
            
            # Generate answer
            st.write("Analyzing research papers...")
            answer = model_handler.generate_answer(query, context)
            
            # Display sources
            with st.expander("📚 View source papers"):
                for paper in papers:
                    st.markdown(f"- [{paper.title}]({paper.url}) ({paper.published})")
            
            st.success("Research analysis complete!")
            st.markdown(answer)

if __name__ == "__main__":
    main()