alem-do-espectro / services /model_handler.py
wakeupmh's picture
fix
46f7de3
raw
history blame
26.6 kB
import logging
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import streamlit as st
from agno.agent import Agent
from agno.tools.arxiv import ArxivTools
from agno.tools.pubmed import PubmedTools
from agno.models.base import Model
from tenacity import retry, stop_after_attempt, wait_exponential
import time
import datetime
MODEL_PATH = "google/flan-t5-small"
# Simple Response class to wrap the model output
class Response:
def __init__(self, content):
# Ensure content is a string and not empty
if content is None:
content = ""
if not isinstance(content, str):
content = str(content)
# Store the content
self.content = content
# Add tool_calls attribute with default empty list
self.tool_calls = []
# Add other attributes that might be needed
self.audio = None
self.images = []
self.citations = []
self.metadata = {}
self.finish_reason = "stop"
self.usage = {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}
# Add timestamp attributes
current_time = time.time()
self.created_at = int(current_time) # Convert to integer
self.created = int(current_time)
self.timestamp = datetime.datetime.now().isoformat()
# Add model info attributes
self.id = "local-model-response"
self.model = "local-huggingface"
self.object = "chat.completion"
self.choices = [{"index": 0, "message": {"role": "assistant", "content": content}, "finish_reason": "stop"}]
# Add additional attributes that might be needed
self.system_fingerprint = ""
self.is_truncated = False
self.role = "assistant"
def __str__(self):
return self.content if self.content else ""
def __repr__(self):
return f"Response(content='{self.content[:50]}{'...' if len(self.content) > 50 else ''}')"
# Personnalized class for local models
class LocalHuggingFaceModel(Model):
def __init__(self, model, tokenizer, max_length=512):
super().__init__(id="local-huggingface")
self.model = model
self.tokenizer = tokenizer
self.max_length = max_length
async def ainvoke(self, prompt: str, **kwargs) -> str:
"""Async invoke method"""
return await self.invoke(prompt=prompt, **kwargs)
async def ainvoke_stream(self, prompt: str, **kwargs):
"""Async streaming invoke method"""
result = await self.invoke(prompt=prompt, **kwargs)
yield result
def invoke(self, prompt: str, **kwargs) -> str:
"""Synchronous invoke method"""
try:
logging.info(f"Invoking model with prompt: {prompt[:100] if prompt else 'None'}...")
# Check if prompt is None or empty
if prompt is None:
logging.warning("None prompt provided to invoke method")
return Response("No input provided. Please provide a valid prompt.")
if not prompt.strip():
logging.warning("Empty prompt provided to invoke method")
return Response("No input provided. Please provide a non-empty prompt.")
inputs = self.tokenizer(prompt, return_tensors="pt", padding=True)
# Configure generation parameters
generation_config = {
"max_length": self.max_length,
"num_return_sequences": 1,
"do_sample": kwargs.get("do_sample", False),
"temperature": kwargs.get("temperature", 1.0),
"top_p": kwargs.get("top_p", 1.0),
}
# Generate the answer
outputs = self.model.generate(**inputs, **generation_config)
decoded_output = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Check if output is empty
if not decoded_output or not decoded_output.strip():
logging.warning("Model generated empty output")
return Response("The model did not generate any output. Please try with a different prompt.")
logging.info(f"Model generated output: {decoded_output[:100]}...")
return Response(decoded_output)
except Exception as e:
logging.error(f"Error in local model generation: {str(e)}")
if hasattr(e, 'args') and len(e.args) > 0:
error_message = e.args[0]
else:
error_message = str(e)
return Response(f"Error during generation: {error_message}")
def invoke_stream(self, prompt: str, **kwargs):
"""Synchronous streaming invoke method"""
result = self.invoke(prompt=prompt, **kwargs)
yield result
def parse_provider_response(self, response: str) -> str:
"""Parse the provider response"""
return response
def parse_provider_response_delta(self, delta: str) -> str:
"""Parse the provider response delta for streaming"""
return delta
async def aresponse(self, prompt=None, **kwargs):
"""Async response method - required abstract method"""
if prompt is None:
prompt = kwargs.get('input', '')
content = await self.ainvoke(prompt=prompt, **kwargs)
return Response(content)
async def aresponse_stream(self, prompt=None, **kwargs):
"""Async streaming response method - required abstract method"""
if prompt is None:
prompt = kwargs.get('input', '')
async for chunk in self.ainvoke_stream(prompt=prompt, **kwargs):
yield Response(chunk)
def response(self, prompt=None, **kwargs):
"""Synchronous response method - required abstract method"""
if prompt is None:
prompt = kwargs.get('input', '')
content = self.invoke(prompt=prompt, **kwargs)
return Response(content)
def response_stream(self, prompt=None, **kwargs):
"""Synchronous streaming response method - required abstract method"""
if prompt is None:
prompt = kwargs.get('input', '')
for chunk in self.invoke_stream(prompt=prompt, **kwargs):
yield Response(chunk)
def generate(self, prompt: str, **kwargs):
try:
inputs = self.tokenizer(prompt, return_tensors="pt", padding=True)
# Configure generation parameters
generation_config = {
"max_length": self.max_length,
"num_return_sequences": 1,
"do_sample": kwargs.get("do_sample", False),
"temperature": kwargs.get("temperature", 1.0),
"top_p": kwargs.get("top_p", 1.0),
}
# Generate the answer
outputs = self.model.generate(**inputs, **generation_config)
decoded_output = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
return decoded_output
except Exception as e:
logging.error(f"Error in local model generation: {str(e)}")
if hasattr(e, 'args') and len(e.args) > 0:
error_message = e.args[0]
else:
error_message = str(e)
return f"Error during generation: {error_message}"
class DummyModel(Model):
def __init__(self):
super().__init__(id="dummy-model")
async def ainvoke(self, prompt: str, **kwargs) -> str:
"""Async invoke method"""
return await self.invoke(prompt=prompt, **kwargs)
async def ainvoke_stream(self, prompt: str, **kwargs):
"""Async streaming invoke method"""
result = await self.invoke(prompt=prompt, **kwargs)
yield result
def invoke(self, prompt: str, **kwargs) -> str:
"""Synchronous invoke method"""
return Response("Sorry, the model is not available. Please try again later.")
def invoke_stream(self, prompt: str, **kwargs):
"""Synchronous streaming invoke method"""
result = self.invoke(prompt=prompt, **kwargs)
yield result
def parse_provider_response(self, response: str) -> str:
"""Parse the provider response"""
return response
def parse_provider_response_delta(self, delta: str) -> str:
"""Parse the provider response delta for streaming"""
return delta
async def aresponse(self, prompt=None, **kwargs):
"""Async response method - required abstract method"""
if prompt is None:
prompt = kwargs.get('input', '')
content = await self.ainvoke(prompt=prompt, **kwargs)
return Response(content)
async def aresponse_stream(self, prompt=None, **kwargs):
"""Async streaming response method - required abstract method"""
if prompt is None:
prompt = kwargs.get('input', '')
async for chunk in self.ainvoke_stream(prompt=prompt, **kwargs):
yield Response(chunk)
def response(self, prompt=None, **kwargs):
"""Synchronous response method - required abstract method"""
if prompt is None:
prompt = kwargs.get('input', '')
content = self.invoke(prompt=prompt, **kwargs)
return Response(content)
def response_stream(self, prompt=None, **kwargs):
"""Synchronous streaming response method - required abstract method"""
if prompt is None:
prompt = kwargs.get('input', '')
for chunk in self.invoke_stream(prompt=prompt, **kwargs):
yield Response(chunk)
class ModelHandler:
def __init__(self):
"""Initialize the model handler"""
self.model = None
self.tokenizer = None
self.translator = None
self.researcher = None
self.summarizer = None
self.presenter = None
self._initialize_model()
def _initialize_model(self):
"""Initialize model and tokenizer"""
self.model, self.tokenizer = self._load_model()
# Using local model as fallback
base_model = self._initialize_local_model()
self.translator = Agent(
name="Translator",
role="You will translate the query to English",
model=base_model,
goal="Translate to English",
instructions=[
"Translate the query to English"
]
)
self.researcher = Agent(
name="Researcher",
role="You are a research scholar who specializes in autism research.",
model=base_model,
tools=[ArxivTools(), PubmedTools()],
instructions=[
"You need to understand the context of the question to provide the best answer based on your tools.",
"Be precise and provide just enough information to be useful",
"You must cite the sources used in your answer.",
"You must create an accessible summary.",
"The content must be for people without autism knowledge.",
"Focus in the main findings of the paper taking in consideration the question.",
"The answer must be brief."
],
show_tool_calls=True,
)
self.summarizer = Agent(
name="Summarizer",
role="You are a specialist in summarizing research papers for people without autism knowledge.",
model=base_model,
instructions=[
"You must provide just enough information to be useful",
"You must cite the sources used in your answer.",
"You must be clear and concise.",
"You must create an accessible summary.",
"The content must be for people without autism knowledge.",
"Focus in the main findings of the paper taking in consideration the question.",
"The answer must be brief.",
"Remove everything related to the run itself like: 'Running: transfer_', just use plain text",
"You must use the language provided by the user to present the results.",
"Add references to the sources used in the answer.",
"Add emojis to make the presentation more interactive.",
"Translate the answer to Portuguese."
],
show_tool_calls=True,
markdown=True,
add_references=True,
)
self.presenter = Agent(
name="Presenter",
role="You are a professional researcher who presents the results of the research.",
model=base_model,
instructions=[
"You are multilingual",
"You must present the results in a clear and concise manner.",
"Cleanup the presentation to make it more readable.",
"Remove unnecessary information.",
"Remove everything related to the run itself like: 'Running: transfer_', just use plain text",
"You must use the language provided by the user to present the results.",
"Add references to the sources used in the answer.",
"Add emojis to make the presentation more interactive.",
"Translate the answer to Portuguese."
],
add_references=True,
)
def _format_prompt(self, role, instructions, query):
"""Format the prompt for the model"""
# Validate inputs
if not role or not role.strip():
role = "Assistant"
logging.warning("Empty role provided to _format_prompt, using default: 'Assistant'")
if not instructions or not instructions.strip():
instructions = "Please process the following input."
logging.warning("Empty instructions provided to _format_prompt, using default instructions")
if not query or not query.strip():
query = "No input provided."
logging.warning("Empty query provided to _format_prompt, using placeholder text")
# Format the prompt
formatted_prompt = f"""Task: {role}
Instructions:
{instructions}
Input: {query}
Output:"""
# Ensure the prompt is not empty
if not formatted_prompt or not formatted_prompt.strip():
logging.error("Generated an empty prompt despite validation")
formatted_prompt = "Please provide a response."
return formatted_prompt
@staticmethod
@st.cache_resource
def _load_model():
"""Load the model and tokenizer with retry logic"""
# Define retry decorator for model loading
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
def load_with_retry(model_path):
try:
logging.info(f"Attempting to load model from {model_path}")
tokenizer = AutoTokenizer.from_pretrained(model_path, cache_dir="./model_cache")
model = AutoModelForSeq2SeqLM.from_pretrained(
model_path,
device_map="cpu",
low_cpu_mem_usage=True,
cache_dir="./model_cache"
)
logging.info(f"Successfully loaded model from {model_path}")
return model, tokenizer
except Exception as e:
logging.error(f"Error loading model from {model_path}: {str(e)}")
raise e
# Try primary model first
try:
return load_with_retry(MODEL_PATH)
except Exception as primary_error:
logging.error(f"Failed to load primary model ({MODEL_PATH}): {str(primary_error)}")
# Try fallback models
fallback_models = [
"google/flan-t5-base",
"google/flan-t5-small",
"facebook/bart-base",
"t5-small"
]
for fallback_model in fallback_models:
if fallback_model != MODEL_PATH: # Skip if it's the same as the primary model
try:
logging.info(f"Trying fallback model: {fallback_model}")
return load_with_retry(fallback_model)
except Exception as fallback_error:
logging.error(f"Failed to load fallback model ({fallback_model}): {str(fallback_error)}")
# If all models fail, try a final tiny model
try:
logging.info("Trying final fallback to t5-small")
return load_with_retry("t5-small")
except Exception as final_error:
logging.error(f"All model loading attempts failed. Final error: {str(final_error)}")
st.error("Failed to load any model. Please check your internet connection and try again.")
return None, None
def _initialize_local_model(self):
"""Initialize local model as fallback"""
if self.model is None or self.tokenizer is None:
self.model, self.tokenizer = self._load_model()
if self.model is None or self.tokenizer is None:
# Create a dummy model that returns a helpful message
logging.error("Failed to load any model. Creating a dummy model.")
return DummyModel()
# Create a LocalHuggingFaceModel instance compatible with Agno
return LocalHuggingFaceModel(self.model, self.tokenizer, max_length=512)
def generate_answer(self, query: str) -> str:
try:
logging.info(f"Generating answer for query: {query}")
# Validate input query
if not query or not query.strip():
logging.error("Empty query provided")
return "Error: Please provide a non-empty query"
# Check if models are available
if isinstance(self.translator, DummyModel) or isinstance(self.researcher, DummyModel) or \
isinstance(self.summarizer, DummyModel) or isinstance(self.presenter, DummyModel):
logging.error("One or more models are not available")
return """
# 🚨 Serviço Temporariamente Indisponível 🚨
Desculpe, estamos enfrentando problemas de conexão com nossos serviços de modelo de linguagem.
## Possíveis causas:
- Problemas de conexão com a internet
- Servidores do Hugging Face podem estar sobrecarregados ou temporariamente indisponíveis
- Limitações de recursos do sistema
## O que você pode fazer:
- Tente novamente mais tarde
- Verifique sua conexão com a internet
- Entre em contato com o suporte se o problema persistir
Agradecemos sua compreensão!
"""
# Format translation prompt
translation_prompt = self._format_prompt(
role="Translate the following text to English",
instructions="Provide a direct English translation of the input text.",
query=query
)
logging.info(f"Translation prompt: {translation_prompt}")
# Validate translation prompt
if not translation_prompt or not translation_prompt.strip():
logging.error("Empty translation prompt generated")
return "Error: Unable to generate translation prompt"
# Get English translation
translation = self.translator.run(prompt=translation_prompt, stream=False)
logging.info(f"Translation result type: {type(translation)}")
logging.info(f"Translation result: {translation}")
if not translation:
logging.error("Translation failed")
return "Error: Unable to translate the query"
if hasattr(translation, 'content'):
translation_content = translation.content
logging.info(f"Translation content: {translation_content}")
else:
translation_content = str(translation)
logging.info(f"Translation as string: {translation_content}")
# Validate translation content
if not translation_content or not translation_content.strip():
logging.error("Empty translation content")
return "Error: Empty translation result"
# Format research prompt
research_prompt = self._format_prompt(
role="Research Assistant",
instructions="Provide a clear and concise answer based on scientific sources.",
query=translation_content
)
logging.info(f"Research prompt: {research_prompt}")
# Validate research prompt
if not research_prompt or not research_prompt.strip():
logging.error("Empty research prompt generated")
return "Error: Unable to generate research prompt"
# Get research results
research_results = self.researcher.run(prompt=research_prompt, stream=False)
logging.info(f"Research results type: {type(research_results)}")
logging.info(f"Research results: {research_results}")
if not research_results:
logging.error("Research failed")
return "Error: Unable to perform research"
if hasattr(research_results, 'content'):
research_content = research_results.content
logging.info(f"Research content: {research_content}")
else:
research_content = str(research_results)
logging.info(f"Research as string: {research_content}")
# Validate research content
if not research_content or not research_content.strip():
logging.error("Empty research content")
return "Error: Empty research result"
logging.info(f"Research results: {research_results}")
# Format summary prompt
summary_prompt = self._format_prompt(
role="Summary Assistant",
instructions="Provide a clear and concise summary of the research results.",
query=research_content
)
logging.info(f"Summary prompt: {summary_prompt}")
# Validate summary prompt
if not summary_prompt or not summary_prompt.strip():
logging.error("Empty summary prompt generated")
return "Error: Unable to generate summary prompt"
# Get summary
summary = self.summarizer.run(prompt=summary_prompt, stream=False)
logging.info(f"Summary type: {type(summary)}")
logging.info(f"Summary: {summary}")
if not summary:
logging.error("Summary failed")
return "Error: Unable to generate summary"
if hasattr(summary, 'content'):
summary_content = summary.content
logging.info(f"Summary content: {summary_content}")
else:
summary_content = str(summary)
logging.info(f"Summary as string: {summary_content}")
# Validate summary content
if not summary_content or not summary_content.strip():
logging.error("Empty summary content")
return "Error: Empty summary result"
logging.info(f"Summary: {summary}")
# Format presentation prompt
presentation_prompt = self._format_prompt(
role="Presentation Assistant",
instructions="Provide a clear and concise presentation of the research results.",
query=summary_content
)
logging.info(f"Presentation prompt: {presentation_prompt}")
# Validate presentation prompt
if not presentation_prompt or not presentation_prompt.strip():
logging.error("Empty presentation prompt generated")
return "Error: Unable to generate presentation prompt"
# Get presentation
presentation = self.presenter.run(prompt=presentation_prompt, stream=False)
logging.info(f"Presentation type: {type(presentation)}")
logging.info(f"Presentation: {presentation}")
if not presentation:
logging.error("Presentation failed")
return "Error: Unable to generate presentation"
if hasattr(presentation, 'content'):
presentation_content = presentation.content
logging.info(f"Presentation content: {presentation_content}")
# Check if content is empty or just whitespace
if not presentation_content.strip():
logging.error("Presentation content is empty or whitespace")
return "Error: Empty presentation content"
return presentation_content
else:
presentation_str = str(presentation)
logging.info(f"Presentation as string: {presentation_str}")
# Check if content is empty or just whitespace
if not presentation_str.strip():
logging.error("Presentation string is empty or whitespace")
return "Error: Empty presentation string"
return presentation_str
except Exception as e:
logging.error(f"Error generating answer: {str(e)}")
if hasattr(e, 'args') and len(e.args) > 0:
error_message = e.args[0]
else:
error_message = str(e)
return f"Error: {error_message}"