Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
metadata
language: en
tags:
- sentiment-analysis
- modernbert
- imdb
datasets:
- imdb
metrics:
- accuracy
- f1
ModernBERT IMDb Sentiment Analysis Model
Model Description
Fine-tuned ModernBERT model for sentiment analysis on IMDb movie reviews. Achieves 95.75% accuracy on the test set.
Usage
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("voxmenthe/modernbert-imdb-sentiment")
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
# Input processing
inputs = tokenizer("This movie was fantastic!", return_tensors="pt")
outputs = model(**inputs)
# Get the predicted class
predicted_class_id = outputs.logits.argmax().item()
# Convert class ID to label
predicted_label = model.config.id2label[predicted_class_id]
print(f"Predicted label: {predicted_label}")
Model Card
Model Details
- Model Name: ModernBERT IMDb Sentiment Analysis
- Base Model: answerdotai/ModernBERT-base
- Task: Sentiment Analysis
- Dataset: IMDb Movie Reviews
- Training Epochs: 5
Model Performance
- Test Accuracy: 95.75%
- Test F1 Score: 95.75%
Model Architecture
- Base Model: answerdotai/ModernBERT-base
- Task-Specific Head: ClassifierHead (from
classifiers.py
) - Number of Labels: 2 (Positive, Negative)
Model Inference
- Input Format: Text (single review)
- Output Format: Predicted sentiment label (Positive or Negative)
Model Version
- Version: 1.0
- Date: 2025-05-07
Model License
- License: MIT License
Model Contact
- Contact: [email protected]
Model Citation
- Citation: voxmenthe/modernbert-imdb-sentiment