|
import gradio as gr |
|
import openai |
|
from openai import OpenAI |
|
import os |
|
import base64 |
|
|
|
|
|
openai.api_key = os.getenv('OPENAI_API_KEY') |
|
openai.organization = os.getenv('OPENAI_ORG_ID') |
|
client = OpenAI(api_key= os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID')) |
|
|
|
|
|
MODEL = "gpt-4o" |
|
|
|
def process_text(text_input): |
|
if text_input: |
|
completion = client.chat.completions.create( |
|
model=MODEL, |
|
messages=[ |
|
{"role": "system", "content": "You are a helpful assistant. Help me with my math homework!"}, |
|
{"role": "user", "content": f"Hello! Could you solve {text_input}?"} |
|
] |
|
) |
|
return "Assistant: " + completion.choices[0].message.content |
|
|
|
def process_image(image_input): |
|
if image_input is not None: |
|
with open(image_input.name, "rb") as f: |
|
base64_image = base64.b64encode(f.read()).decode("utf-8") |
|
response = client.chat.completions.create( |
|
model=MODEL, |
|
messages=[ |
|
{"role": "system", "content": "You are a helpful assistant that responds in Markdown."}, |
|
{"role": "user", "content": [ |
|
{"type": "text", "text": "Help me understand what is it"}, |
|
{"type": "image_url", "image_url": { |
|
"url": f"data:image/png;base64,{base64_image}"} |
|
} |
|
]} |
|
], |
|
temperature=0.0, |
|
) |
|
return response.choices[0].message.content |
|
|
|
def main(text_input="", image_input=None): |
|
if text_input and image_input is None: |
|
return process_text(text_input) |
|
elif image_input is not None: |
|
return process_image(image_input) |
|
|
|
iface = gr.Interface(fn=main, inputs=["text", gr.inputs.Image()], outputs="text") |
|
iface.launch() |
|
|