Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import openai
|
3 |
+
from openai import OpenAI
|
4 |
+
import os
|
5 |
+
import base64
|
6 |
+
|
7 |
+
# Set API key and organization ID from environment variables
|
8 |
+
openai.api_key = os.getenv('OPENAI_API_KEY')
|
9 |
+
openai.organization = os.getenv('OPENAI_ORG_ID')
|
10 |
+
client = OpenAI(api_key= os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
|
11 |
+
|
12 |
+
# Define the model to be used
|
13 |
+
MODEL = "gpt-4o"
|
14 |
+
|
15 |
+
def process_text(text_input):
|
16 |
+
if text_input:
|
17 |
+
completion = client.chat.completions.create(
|
18 |
+
model=MODEL,
|
19 |
+
messages=[
|
20 |
+
{"role": "system", "content": "You are a helpful assistant. Help me with my math homework!"},
|
21 |
+
{"role": "user", "content": f"Hello! Could you solve {text_input}?"}
|
22 |
+
]
|
23 |
+
)
|
24 |
+
return "Assistant: " + completion.choices[0].message.content
|
25 |
+
|
26 |
+
def process_image(image_input):
|
27 |
+
if image_input is not None:
|
28 |
+
with open(image_input.name, "rb") as f:
|
29 |
+
base64_image = base64.b64encode(f.read()).decode("utf-8")
|
30 |
+
response = client.chat.completions.create(
|
31 |
+
model=MODEL,
|
32 |
+
messages=[
|
33 |
+
{"role": "system", "content": "You are a helpful assistant that responds in Markdown."},
|
34 |
+
{"role": "user", "content": [
|
35 |
+
{"type": "text", "text": "Help me understand what is it"},
|
36 |
+
{"type": "image_url", "image_url": {
|
37 |
+
"url": f"data:image/png;base64,{base64_image}"}
|
38 |
+
}
|
39 |
+
]}
|
40 |
+
],
|
41 |
+
temperature=0.0,
|
42 |
+
)
|
43 |
+
return response.choices[0].message.content
|
44 |
+
|
45 |
+
def main(text_input="", image_input=None):
|
46 |
+
if text_input and image_input is None:
|
47 |
+
return process_text(text_input)
|
48 |
+
elif image_input is not None:
|
49 |
+
return process_image(image_input)
|
50 |
+
|
51 |
+
iface = gr.Interface(fn=main, inputs=["text", gr.inputs.Image()], outputs="text")
|
52 |
+
iface.launch()
|