File size: 4,229 Bytes
1ac84a9
 
 
 
56c2a68
1ac84a9
 
 
d0a1d12
66ec133
 
1ac84a9
 
f6fc806
1ac84a9
fa530b9
 
 
 
 
f6fc806
 
 
 
 
 
 
 
 
 
 
 
d98c79b
 
 
 
 
 
 
 
 
 
 
 
 
fa530b9
9180e08
1ac84a9
3c671c6
1ac84a9
 
f6fc806
1ac84a9
 
 
3c671c6
 
 
5ae861e
84a19ec
24cfdc1
84a19ec
 
1ac84a9
723d90c
1ac84a9
84a19ec
 
5ae861e
1ac84a9
 
7f990d9
f6fc806
7f990d9
f6fc806
84a19ec
 
 
 
7f990d9
 
 
1ac84a9
84a19ec
1ac84a9
 
3c671c6
1ac84a9
f05ed48
1ac84a9
f05ed48
1ac84a9
f05ed48
1ac84a9
7c4f4a3
f05ed48
f6fc806
d98c79b
 
 
f05ed48
d98c79b
f05ed48
20eb2c5
f05ed48
bf30b16
f05ed48
 
 
 
 
 
5ae861e
f6fc806
 
73b2985
6f4788a
f05ed48
6f4788a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import gradio as gr
import openai
from openai import OpenAI
import os
import io
import base64

# Set API key and organization ID from environment variables
api_key = os.environ.get("OPENAI_API_KEY")
#base_url = os.environ.get("OPENAI_API_BASE")
client = OpenAI(api_key=api_key)

# Define the model to be used
MODEL = os.environ.get("MODEL")

def read(filename):
    with open(filename) as f:
        data = f.read()
    return data
    
SYS_PROMPT = read('system_prompt.txt')


DESCRIPTION = '''
<div>
<h1 style="text-align: center;">诊疗助手</h1>
<p>一个帮助您分析症状和检验报告的AI工具。</p>
<p>🔎 选择您需要咨询的科室,在输入框中输入症状描述或者体检信息等;您也可以在图片框中上传检测报告图。</p>
<p>🦕 请注意生成信息可能不准确,且不具备任何实际参考价值,如有需要请联系专业医生。</p>
</div>
'''


css = """
h1 {
    text-align: center;
    display: block;
}
footer {
    display:none !important
}
"""


LICENSE = '采用 ' + MODEL + ' 模型'
    
def process_text(text_input, unit):
    if text_input:
        completion = client.chat.completions.create(
            model=MODEL,
            messages=[
                {"role": "system", "content": f" You are a experienced {unit} doctor." + SYS_PROMPT},
                {"role": "user", "content": f"Hello! Could you solve {text_input}?"}
            ]
        )
        return completion.choices[0].message.content
    return ""

def encode_image_to_base64(image_input):
    buffered = io.BytesIO()
    image_input.save(buffered, format="JPEG")
    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
    return img_str

def process_image(image_input, unit):
    if image_input is not None:
        #with open(image_input.name, "rb") as f:
        #    base64_image = base64.b64encode(f.read()).decode("utf-8")
        base64_image = encode_image_to_base64(image_input)
        response = client.chat.completions.create(
            model=MODEL,
            messages=[
                {"role": "system", "content": f" You are a experienced {unit} doctor." + SYS_PROMPT},
                {"role": "user", "content": [
                    {"type": "text", "text": "Help me understand what is in this picture and analysis."},
                    {"type": "image_url", 
                     "image_url": {
                        "url": f"data:image/jpeg;base64,{base64_image}",
                        "detail":"low"}
                    }
                ]}
            ],
            temperature=0.0,
            max_tokens=1024,
        )
        return response.choices[0].message.content


def main(text_input="", image_input=None, unit=""):
    if text_input and image_input is None:
        return process_text(text_input,unit)
    elif image_input is not None:
        return process_image(image_input,unit)

with gr.Blocks(theme='shivi/calm_seafoam') as iface:
    with gr.Accordion(""):
        gr.Markdown(DESCRIPTION)
        unit = gr.Dropdown(label="🩺科室", value='中医科', elem_id="units",
                            choices=["中医科", "内科", "外科", "妇产科",  "儿科", \
                                     "五官科", "男科", "皮肤性病科", "传染科", "精神心理科", \
                                        "整形美容科", "营养科", "生殖中心", "麻醉医学科", "医学影像科", \
                                            "骨科", "肿瘤科", "急诊科", "检验科"])
    with gr.Row():
        output_box = gr.Markdown(label="分析")  # Create an output textbox
    with gr.Row():
        image_input = gr.Image(type="pil", label="上传图片")  # Create an image upload button
        text_input = gr.Textbox(label="输入")  # Create a text input box
    with gr.Row():
        submit_btn = gr.Button("🚀 确认")  # Create a submit button
        clear_btn = gr.ClearButton(output_box, value="🗑️ 清空") # Create a clear button

    # Set up the event listeners
    submit_btn.click(main, inputs=[text_input, image_input, unit], outputs=output_box)

    gr.Markdown(LICENSE)
    
#gr.close_all()

iface.queue().launch(show_api=False)  # Launch the Gradio interface