Spaces:
Runtime error
Runtime error
| # IndicTransToolkit | |
| ## About | |
| The goal of this repository is to provide a simple, modular, and extendable toolkit for [IndicTrans2](https://github.com/AI4Bharat/IndicTrans2) and be compatible with the HuggingFace models released. Please refer to the `CHANGELOG.md` for latest developments. | |
| ## Pre-requisites | |
| - `Python 3.8+` | |
| - [Indic NLP Library](https://github.com/VarunGumma/indic_nlp_library) | |
| - Other requirements as listed in `requirements.txt` | |
| ## Configuration | |
| - Editable installation (Note, this may take a while): | |
| ```bash | |
| git clone https://github.com/VarunGumma/IndicTransToolkit | |
| cd IndicTransToolkit | |
| pip install --editable . --use-pep517 # required for pip >= 25.0 | |
| # in case it fails, try: | |
| # pip install --editable . --use-pep517 --config-settings editable_mode=compat | |
| ``` | |
| ## Examples | |
| For the training usecase, please refer [here](https://github.com/AI4Bharat/IndicTrans2/tree/main/huggingface_interface). | |
| ### PreTainedTokenizer | |
| ```python | |
| import torch | |
| from IndicTransToolkit.processor import IndicProcessor # NOW IMPLEMENTED IN CYTHON !! | |
| from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
| ip = IndicProcessor(inference=True) | |
| tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-en-indic-dist-200M", trust_remote_code=True) | |
| model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-dist-200M", trust_remote_code=True) | |
| sentences = [ | |
| "This is a test sentence.", | |
| "This is another longer different test sentence.", | |
| "Please send an SMS to 9876543210 and an email on [email protected] by 15th October, 2023.", | |
| ] | |
| batch = ip.preprocess_batch(sentences, src_lang="eng_Latn", tgt_lang="hin_Deva", visualize=False) # set it to visualize=True to print a progress bar | |
| batch = tokenizer(batch, padding="longest", truncation=True, max_length=256, return_tensors="pt") | |
| with torch.inference_mode(): | |
| outputs = model.generate(**batch, num_beams=5, num_return_sequences=1, max_length=256) | |
| with tokenizer.as_target_tokenizer(): | |
| # This scoping is absolutely necessary, as it will instruct the tokenizer to tokenize using the target vocabulary. | |
| # Failure to use this scoping will result in gibberish/unexpected predictions as the output will be de-tokenized with the source vocabulary instead. | |
| outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
| outputs = ip.postprocess_batch(outputs, lang="hin_Deva") | |
| print(outputs) | |
| >>> ['यह एक परीक्षण वाक्य है।', 'यह एक और लंबा अलग परीक्षण वाक्य है।', 'कृपया 9876543210 पर एक एस. एम. एस. भेजें और 15 अक्टूबर, 2023 तक [email protected] पर एक ईमेल भेजें।'] | |
| ``` | |
| ### Evaluation | |
| - `IndicEvaluator` is a python implementation of [compute_metrics.sh](https://github.com/AI4Bharat/IndicTrans2/blob/main/compute_metrics.sh). | |
| - We have found that this python implementation gives slightly lower scores than the original `compute_metrics.sh`. So, please use this function cautiously, and feel free to raise a PR if you have found the bug/fix. | |
| ```python | |
| from IndicTransToolkit import IndicEvaluator | |
| # this method returns a dictionary with BLEU and ChrF2++ scores with appropriate signatures | |
| evaluator = IndicEvaluator() | |
| scores = evaluator.evaluate(tgt_lang=tgt_lang, preds=pred_file, refs=ref_file) | |
| # alternatively, you can pass the list of predictions and references instead of files | |
| # scores = evaluator.evaluate(tgt_lang=tgt_lang, preds=preds, refs=refs) | |
| ``` | |
| ## Authors | |
| - Varun Gumma ([email protected]) | |
| - Jay Gala ([email protected]) | |
| - Pranjal Agadh Chitale ([email protected]) | |
| - Raj Dabre ([email protected]) | |
| ## Bugs and Contribution | |
| Since this a bleeding-edge module, you may encounter broken stuff and import issues once in a while. In case you encounter any bugs or want additional functionalities, please feel free to raise `Issues`/`Pull Requests` or contact the authors. | |
| ## Citation | |
| If you use our codebase, or models, please do cite the following paper: | |
| ```bibtex | |
| @article{ | |
| gala2023indictrans, | |
| title={IndicTrans2: Towards High-Quality and Accessible Machine Translation Models for all 22 Scheduled Indian Languages}, | |
| author={Jay Gala and Pranjal A Chitale and A K Raghavan and Varun Gumma and Sumanth Doddapaneni and Aswanth Kumar M and Janki Atul Nawale and Anupama Sujatha and Ratish Puduppully and Vivek Raghavan and Pratyush Kumar and Mitesh M Khapra and Raj Dabre and Anoop Kunchukuttan}, | |
| journal={Transactions on Machine Learning Research}, | |
| issn={2835-8856}, | |
| year={2023}, | |
| url={https://openreview.net/forum?id=vfT4YuzAYA}, | |
| note={} | |
| } | |
| ``` | |