Spaces:
Running
Running
File size: 1,670 Bytes
34b4f29 4c456b6 11f5b1b 34b4f29 4c456b6 ee67cd5 4c456b6 11f5b1b 4c456b6 34b4f29 11f5b1b 4c456b6 11f5b1b 253aa25 4c456b6 34b4f29 11f5b1b 34b4f29 11f5b1b 34b4f29 4c456b6 34b4f29 11f5b1b 34b4f29 11f5b1b 34b4f29 1643b9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import (
pipeline,
AutoTokenizer,
AutoModelForCausalLM,
)
from langchain_huggingface import HuggingFacePipeline
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnableSequence
# β Model setup β
MODEL_ID = "bigcode/starcoder2-3b"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
# Explicitly set pad_token_id to eos_token_id
tokenizer.pad_token_id = tokenizer.eos_token_id
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, trust_remote_code=True)
# β Pipeline setup (remove unused parameters, set device explicitly) β
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device=-1, # Explicitly use CPU; change to 0 or "cuda" if GPU available
max_new_tokens=64,
do_sample=False,
)
llm = HuggingFacePipeline(pipeline=pipe)
# β Prompt & chain (using RunnableSequence) β
prompt = PromptTemplate(
input_variables=["description"],
template=(
"### Convert English description to an Emmet abbreviation\n"
"Description: {description}\n"
"Emmet:"
),
)
chain = RunnableSequence(prompt | llm)
# β FastAPI app β
app = FastAPI()
class Req(BaseModel):
description: str
class Res(BaseModel):
emmet: str
@app.get("/")
async def root():
return {"message": "Welcome to the Emmet Generator API. Use POST /generate-emmet."}
@app.post("/generate-emmet", response_model=Res)
async def generate_emmet(req: Req):
raw = chain.invoke(req.description)
emmet = raw.strip().splitlines()[0]
return {"emmet": emmet} |