Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from fastapi import FastAPI
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 5 |
+
from langchain.llms import HuggingFacePipeline
|
| 6 |
+
from langchain import PromptTemplate, LLMChain
|
| 7 |
+
|
| 8 |
+
# — Model setup (small enough to CPU-serve in a Space) —
|
| 9 |
+
MODEL_ID = "bigcode/starcoder2-1b"
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
|
| 12 |
+
|
| 13 |
+
# wrap in a HF pipeline and LangChain LLM
|
| 14 |
+
pipe = pipeline(
|
| 15 |
+
"text-generation",
|
| 16 |
+
model=model,
|
| 17 |
+
tokenizer=tokenizer,
|
| 18 |
+
max_new_tokens=64,
|
| 19 |
+
temperature=0.2,
|
| 20 |
+
top_p=0.95,
|
| 21 |
+
do_sample=False,
|
| 22 |
+
)
|
| 23 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
| 24 |
+
|
| 25 |
+
# define a simple prompt → chain
|
| 26 |
+
prompt = PromptTemplate(
|
| 27 |
+
input_variables=["description"],
|
| 28 |
+
template=(
|
| 29 |
+
"### Convert English description to an Emmet abbreviation\n"
|
| 30 |
+
"Description: {description}\n"
|
| 31 |
+
"Emmet:"
|
| 32 |
+
),
|
| 33 |
+
)
|
| 34 |
+
chain = LLMChain(llm=llm, prompt=prompt)
|
| 35 |
+
|
| 36 |
+
# FastAPI app
|
| 37 |
+
app = FastAPI()
|
| 38 |
+
|
| 39 |
+
class Req(BaseModel):
|
| 40 |
+
description: str
|
| 41 |
+
|
| 42 |
+
class Res(BaseModel):
|
| 43 |
+
emmet: str
|
| 44 |
+
|
| 45 |
+
@app.post("/generate-emmet", response_model=Res)
|
| 46 |
+
async def generate_emmet(req: Req):
|
| 47 |
+
raw = chain.run(req.description)
|
| 48 |
+
# take just the first line after the prompt
|
| 49 |
+
emmet = raw.strip().splitlines()[0]
|
| 50 |
+
return {"emmet": emmet}
|