Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from fastapi import FastAPI
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
5 |
+
from langchain.llms import HuggingFacePipeline
|
6 |
+
from langchain import PromptTemplate, LLMChain
|
7 |
+
|
8 |
+
# — Model setup (small enough to CPU-serve in a Space) —
|
9 |
+
MODEL_ID = "bigcode/starcoder2-1b"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
|
12 |
+
|
13 |
+
# wrap in a HF pipeline and LangChain LLM
|
14 |
+
pipe = pipeline(
|
15 |
+
"text-generation",
|
16 |
+
model=model,
|
17 |
+
tokenizer=tokenizer,
|
18 |
+
max_new_tokens=64,
|
19 |
+
temperature=0.2,
|
20 |
+
top_p=0.95,
|
21 |
+
do_sample=False,
|
22 |
+
)
|
23 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
24 |
+
|
25 |
+
# define a simple prompt → chain
|
26 |
+
prompt = PromptTemplate(
|
27 |
+
input_variables=["description"],
|
28 |
+
template=(
|
29 |
+
"### Convert English description to an Emmet abbreviation\n"
|
30 |
+
"Description: {description}\n"
|
31 |
+
"Emmet:"
|
32 |
+
),
|
33 |
+
)
|
34 |
+
chain = LLMChain(llm=llm, prompt=prompt)
|
35 |
+
|
36 |
+
# FastAPI app
|
37 |
+
app = FastAPI()
|
38 |
+
|
39 |
+
class Req(BaseModel):
|
40 |
+
description: str
|
41 |
+
|
42 |
+
class Res(BaseModel):
|
43 |
+
emmet: str
|
44 |
+
|
45 |
+
@app.post("/generate-emmet", response_model=Res)
|
46 |
+
async def generate_emmet(req: Req):
|
47 |
+
raw = chain.run(req.description)
|
48 |
+
# take just the first line after the prompt
|
49 |
+
emmet = raw.strip().splitlines()[0]
|
50 |
+
return {"emmet": emmet}
|