Spaces:
Running
Running
File size: 1,337 Bytes
34b4f29 0f51816 34b4f29 ee67cd5 34b4f29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import os
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from langchain_community.llms import HuggingFacePipeline
from langchain import PromptTemplate, LLMChain
# β Model setup (small enough to CPU-serve in a Space) β
MODEL_ID = "bigcode/starcoder2-3b"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
# wrap in a HF pipeline and LangChain LLM
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=64,
temperature=0.2,
top_p=0.95,
do_sample=False,
)
llm = HuggingFacePipeline(pipeline=pipe)
# define a simple prompt β chain
prompt = PromptTemplate(
input_variables=["description"],
template=(
"### Convert English description to an Emmet abbreviation\n"
"Description: {description}\n"
"Emmet:"
),
)
chain = LLMChain(llm=llm, prompt=prompt)
# FastAPI app
app = FastAPI()
class Req(BaseModel):
description: str
class Res(BaseModel):
emmet: str
@app.post("/generate-emmet", response_model=Res)
async def generate_emmet(req: Req):
raw = chain.run(req.description)
# take just the first line after the prompt
emmet = raw.strip().splitlines()[0]
return {"emmet": emmet}
|