Spaces:
Runtime error
Runtime error
ckpt to pth file
Browse files- app.py +9 -14
- config.py +176 -0
- utils.py +2 -59
- epoch=36-step=19166.ckpt → yolov3.pth +2 -2
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from PIL import Image
|
4 |
import cv2
|
5 |
import albumentations as A
|
6 |
from albumentations.pytorch import ToTensorV2
|
@@ -8,6 +7,7 @@ import matplotlib.pyplot as plt
|
|
8 |
import matplotlib
|
9 |
matplotlib.use('agg')
|
10 |
|
|
|
11 |
from model import YOLOv3
|
12 |
from utils import (
|
13 |
cells_to_bboxes,
|
@@ -15,23 +15,18 @@ from utils import (
|
|
15 |
plot_image
|
16 |
)
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
] # Note these have been rescaled to be between [0, 1]
|
24 |
-
|
25 |
-
fname = 'epoch=36-step=19166.ckpt'
|
26 |
-
checkpoint = torch.load(fname, map_location=torch.device('cpu'))
|
27 |
-
model_state_dict = checkpoint['state_dict']
|
28 |
model = YOLOv3(num_classes=20)
|
29 |
-
model.load_state_dict(
|
30 |
|
31 |
IMAGE_SIZE = 416
|
32 |
S = [IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8]
|
33 |
-
anchors = ( torch.tensor(ANCHORS)
|
34 |
-
* torch.tensor(S).unsqueeze(1)\
|
35 |
.unsqueeze(1).repeat(1, 3, 2)
|
36 |
)
|
37 |
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
import cv2
|
4 |
import albumentations as A
|
5 |
from albumentations.pytorch import ToTensorV2
|
|
|
7 |
import matplotlib
|
8 |
matplotlib.use('agg')
|
9 |
|
10 |
+
import config
|
11 |
from model import YOLOv3
|
12 |
from utils import (
|
13 |
cells_to_bboxes,
|
|
|
15 |
plot_image
|
16 |
)
|
17 |
|
18 |
+
# fname = 'epoch=36-step=19166.ckpt'
|
19 |
+
fname = 'yolov3.pth'
|
20 |
+
# checkpoint = torch.load(fname, map_location=torch.device('cpu'))
|
21 |
+
# model_state_dict = checkpoint['state_dict']
|
22 |
+
# torch.save(model.state_dict(), 'yolov3.pth')
|
|
|
|
|
|
|
|
|
|
|
23 |
model = YOLOv3(num_classes=20)
|
24 |
+
model.load_state_dict(torch.load(fname))
|
25 |
|
26 |
IMAGE_SIZE = 416
|
27 |
S = [IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8]
|
28 |
+
anchors = ( torch.tensor(config.ANCHORS)
|
29 |
+
* torch.tensor(config.S).unsqueeze(1)\
|
30 |
.unsqueeze(1).repeat(1, 3, 2)
|
31 |
)
|
32 |
|
config.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import albumentations as A
|
2 |
+
import cv2
|
3 |
+
|
4 |
+
from albumentations.pytorch import ToTensorV2
|
5 |
+
|
6 |
+
DATASET='PASCAL_VOC'
|
7 |
+
DEVICE = "cpu"
|
8 |
+
NUM_WORKERS = 0
|
9 |
+
BATCH_SIZE = 16
|
10 |
+
IMAGE_SIZE = 416
|
11 |
+
NUM_CLASSES = 20
|
12 |
+
CONF_THRESHOLD = 0.05
|
13 |
+
MAP_IOU_THRESH = 0.5
|
14 |
+
NMS_IOU_THRESH = 0.45
|
15 |
+
S = [IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8]
|
16 |
+
PIN_MEMORY = True
|
17 |
+
LOAD_MODEL = False
|
18 |
+
SAVE_MODEL = True
|
19 |
+
|
20 |
+
ANCHORS = [
|
21 |
+
[(0.28, 0.22), (0.38, 0.48), (0.9, 0.78)],
|
22 |
+
[(0.07, 0.15), (0.15, 0.11), (0.14, 0.29)],
|
23 |
+
[(0.02, 0.03), (0.04, 0.07), (0.08, 0.06)],
|
24 |
+
] # Note these have been rescaled to be between [0, 1]
|
25 |
+
|
26 |
+
means = [0.485, 0.456, 0.406]
|
27 |
+
|
28 |
+
scale = 1.1
|
29 |
+
train_transforms = A.Compose(
|
30 |
+
[
|
31 |
+
A.LongestMaxSize(max_size=int(IMAGE_SIZE * scale)),
|
32 |
+
A.PadIfNeeded(
|
33 |
+
min_height=int(IMAGE_SIZE * scale),
|
34 |
+
min_width=int(IMAGE_SIZE * scale),
|
35 |
+
border_mode=cv2.BORDER_CONSTANT,
|
36 |
+
),
|
37 |
+
A.Rotate(limit = 10, interpolation=1, border_mode=4),
|
38 |
+
A.RandomCrop(width=IMAGE_SIZE, height=IMAGE_SIZE),
|
39 |
+
A.ColorJitter(brightness=0.6, contrast=0.6, saturation=0.6, hue=0.6, p=0.4),
|
40 |
+
A.OneOf(
|
41 |
+
[
|
42 |
+
A.ShiftScaleRotate(
|
43 |
+
rotate_limit=20, p=0.5, border_mode=cv2.BORDER_CONSTANT
|
44 |
+
),
|
45 |
+
# A.Affine(shear=15, p=0.5, mode="constant"),
|
46 |
+
],
|
47 |
+
p=1.0,
|
48 |
+
),
|
49 |
+
A.HorizontalFlip(p=0.5),
|
50 |
+
A.Blur(p=0.1),
|
51 |
+
A.CLAHE(p=0.1),
|
52 |
+
A.Posterize(p=0.1),
|
53 |
+
A.ToGray(p=0.1),
|
54 |
+
A.ChannelShuffle(p=0.05),
|
55 |
+
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
|
56 |
+
ToTensorV2(),
|
57 |
+
],
|
58 |
+
bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[],),
|
59 |
+
)
|
60 |
+
test_transforms = A.Compose(
|
61 |
+
[
|
62 |
+
A.LongestMaxSize(max_size=IMAGE_SIZE),
|
63 |
+
A.PadIfNeeded(
|
64 |
+
min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
|
65 |
+
),
|
66 |
+
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
|
67 |
+
ToTensorV2(),
|
68 |
+
],
|
69 |
+
bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[]),
|
70 |
+
)
|
71 |
+
|
72 |
+
PASCAL_CLASSES = [
|
73 |
+
"aeroplane",
|
74 |
+
"bicycle",
|
75 |
+
"bird",
|
76 |
+
"boat",
|
77 |
+
"bottle",
|
78 |
+
"bus",
|
79 |
+
"car",
|
80 |
+
"cat",
|
81 |
+
"chair",
|
82 |
+
"cow",
|
83 |
+
"diningtable",
|
84 |
+
"dog",
|
85 |
+
"horse",
|
86 |
+
"motorbike",
|
87 |
+
"person",
|
88 |
+
"pottedplant",
|
89 |
+
"sheep",
|
90 |
+
"sofa",
|
91 |
+
"train",
|
92 |
+
"tvmonitor"
|
93 |
+
]
|
94 |
+
|
95 |
+
COCO_LABELS = ['person',
|
96 |
+
'bicycle',
|
97 |
+
'car',
|
98 |
+
'motorcycle',
|
99 |
+
'airplane',
|
100 |
+
'bus',
|
101 |
+
'train',
|
102 |
+
'truck',
|
103 |
+
'boat',
|
104 |
+
'traffic light',
|
105 |
+
'fire hydrant',
|
106 |
+
'stop sign',
|
107 |
+
'parking meter',
|
108 |
+
'bench',
|
109 |
+
'bird',
|
110 |
+
'cat',
|
111 |
+
'dog',
|
112 |
+
'horse',
|
113 |
+
'sheep',
|
114 |
+
'cow',
|
115 |
+
'elephant',
|
116 |
+
'bear',
|
117 |
+
'zebra',
|
118 |
+
'giraffe',
|
119 |
+
'backpack',
|
120 |
+
'umbrella',
|
121 |
+
'handbag',
|
122 |
+
'tie',
|
123 |
+
'suitcase',
|
124 |
+
'frisbee',
|
125 |
+
'skis',
|
126 |
+
'snowboard',
|
127 |
+
'sports ball',
|
128 |
+
'kite',
|
129 |
+
'baseball bat',
|
130 |
+
'baseball glove',
|
131 |
+
'skateboard',
|
132 |
+
'surfboard',
|
133 |
+
'tennis racket',
|
134 |
+
'bottle',
|
135 |
+
'wine glass',
|
136 |
+
'cup',
|
137 |
+
'fork',
|
138 |
+
'knife',
|
139 |
+
'spoon',
|
140 |
+
'bowl',
|
141 |
+
'banana',
|
142 |
+
'apple',
|
143 |
+
'sandwich',
|
144 |
+
'orange',
|
145 |
+
'broccoli',
|
146 |
+
'carrot',
|
147 |
+
'hot dog',
|
148 |
+
'pizza',
|
149 |
+
'donut',
|
150 |
+
'cake',
|
151 |
+
'chair',
|
152 |
+
'couch',
|
153 |
+
'potted plant',
|
154 |
+
'bed',
|
155 |
+
'dining table',
|
156 |
+
'toilet',
|
157 |
+
'tv',
|
158 |
+
'laptop',
|
159 |
+
'mouse',
|
160 |
+
'remote',
|
161 |
+
'keyboard',
|
162 |
+
'cell phone',
|
163 |
+
'microwave',
|
164 |
+
'oven',
|
165 |
+
'toaster',
|
166 |
+
'sink',
|
167 |
+
'refrigerator',
|
168 |
+
'book',
|
169 |
+
'clock',
|
170 |
+
'vase',
|
171 |
+
'scissors',
|
172 |
+
'teddy bear',
|
173 |
+
'hair drier',
|
174 |
+
'toothbrush'
|
175 |
+
]
|
176 |
+
|
utils.py
CHANGED
@@ -7,7 +7,6 @@ import random
|
|
7 |
import torch
|
8 |
|
9 |
from collections import Counter
|
10 |
-
from torch.utils.data import DataLoader
|
11 |
from tqdm import tqdm
|
12 |
|
13 |
|
@@ -235,7 +234,8 @@ def mean_average_precision(
|
|
235 |
def plot_image(image, boxes, return_fig=False):
|
236 |
"""Plots predicted bounding boxes on the image"""
|
237 |
cmap = plt.get_cmap("tab20b")
|
238 |
-
class_labels = config.COCO_LABELS if config.DATASET=='COCO'
|
|
|
239 |
colors = [cmap(i) for i in np.linspace(0, 1, len(class_labels))]
|
240 |
im = np.array(image)
|
241 |
height, width, _ = im.shape
|
@@ -446,63 +446,6 @@ def load_checkpoint(checkpoint_file, model, optimizer, lr, device):
|
|
446 |
for param_group in optimizer.param_groups:
|
447 |
param_group["lr"] = lr
|
448 |
|
449 |
-
|
450 |
-
def get_loaders(train_csv_path, test_csv_path):
|
451 |
-
from dataset import YOLODataset
|
452 |
-
|
453 |
-
IMAGE_SIZE = config.IMAGE_SIZE
|
454 |
-
train_dataset = YOLODataset(
|
455 |
-
train_csv_path,
|
456 |
-
transform=config.train_transforms,
|
457 |
-
S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8],
|
458 |
-
img_dir=config.IMG_DIR,
|
459 |
-
label_dir=config.LABEL_DIR,
|
460 |
-
anchors=config.ANCHORS,
|
461 |
-
)
|
462 |
-
test_dataset = YOLODataset(
|
463 |
-
test_csv_path,
|
464 |
-
transform=config.test_transforms,
|
465 |
-
S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8],
|
466 |
-
img_dir=config.IMG_DIR,
|
467 |
-
label_dir=config.LABEL_DIR,
|
468 |
-
anchors=config.ANCHORS,
|
469 |
-
)
|
470 |
-
train_loader = DataLoader(
|
471 |
-
dataset=train_dataset,
|
472 |
-
batch_size=config.BATCH_SIZE,
|
473 |
-
num_workers=config.NUM_WORKERS,
|
474 |
-
pin_memory=config.PIN_MEMORY,
|
475 |
-
shuffle=True,
|
476 |
-
drop_last=False,
|
477 |
-
)
|
478 |
-
test_loader = DataLoader(
|
479 |
-
dataset=test_dataset,
|
480 |
-
batch_size=config.BATCH_SIZE,
|
481 |
-
num_workers=config.NUM_WORKERS,
|
482 |
-
pin_memory=config.PIN_MEMORY,
|
483 |
-
shuffle=False,
|
484 |
-
drop_last=False,
|
485 |
-
)
|
486 |
-
|
487 |
-
train_eval_dataset = YOLODataset(
|
488 |
-
train_csv_path,
|
489 |
-
transform=config.test_transforms,
|
490 |
-
S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8],
|
491 |
-
img_dir=config.IMG_DIR,
|
492 |
-
label_dir=config.LABEL_DIR,
|
493 |
-
anchors=config.ANCHORS,
|
494 |
-
)
|
495 |
-
train_eval_loader = DataLoader(
|
496 |
-
dataset=train_eval_dataset,
|
497 |
-
batch_size=config.BATCH_SIZE,
|
498 |
-
num_workers=config.NUM_WORKERS,
|
499 |
-
pin_memory=config.PIN_MEMORY,
|
500 |
-
shuffle=False,
|
501 |
-
drop_last=False,
|
502 |
-
)
|
503 |
-
|
504 |
-
return train_loader, test_loader, train_eval_loader
|
505 |
-
|
506 |
def plot_couple_examples(model, batch, thresh, iou_thresh, anchors):
|
507 |
model.eval()
|
508 |
x, _ = batch
|
|
|
7 |
import torch
|
8 |
|
9 |
from collections import Counter
|
|
|
10 |
from tqdm import tqdm
|
11 |
|
12 |
|
|
|
234 |
def plot_image(image, boxes, return_fig=False):
|
235 |
"""Plots predicted bounding boxes on the image"""
|
236 |
cmap = plt.get_cmap("tab20b")
|
237 |
+
class_labels = config.COCO_LABELS if config.DATASET=='COCO' \
|
238 |
+
else config.PASCAL_CLASSES
|
239 |
colors = [cmap(i) for i in np.linspace(0, 1, len(class_labels))]
|
240 |
im = np.array(image)
|
241 |
height, width, _ = im.shape
|
|
|
446 |
for param_group in optimizer.param_groups:
|
447 |
param_group["lr"] = lr
|
448 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
449 |
def plot_couple_examples(model, batch, thresh, iou_thresh, anchors):
|
450 |
model.eval()
|
451 |
x, _ = batch
|
epoch=36-step=19166.ckpt → yolov3.pth
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af069adc24fec136b92b068e6e6c1361dd4b9dba7797dac7798489e8181d021c
|
3 |
+
size 246865311
|