Spaces:
Runtime error
Runtime error
model w mosaic aug
Browse files- app.py +98 -0
- epoch=36-step=19166.ckpt +3 -0
- examples/000015.jpg +0 -0
- examples/000017.jpg +0 -0
- examples/000030.jpg +0 -0
- examples/000069.jpg +0 -0
- examples/000071.jpg +0 -0
- examples/000084.jpg +0 -0
- examples/000086.jpg +0 -0
- examples/000088.jpg +0 -0
- examples/000095.jpg +0 -0
- examples/000100.jpg +0 -0
- examples/000186.jpg +0 -0
- model.py +197 -0
- utils.py +590 -0
app.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
import cv2
|
5 |
+
import albumentations as A
|
6 |
+
from albumentations.pytorch import ToTensorV2
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import matplotlib
|
9 |
+
matplotlib.use('agg')
|
10 |
+
|
11 |
+
from model import YOLOv3
|
12 |
+
from utils import (
|
13 |
+
cells_to_bboxes,
|
14 |
+
non_max_suppression,
|
15 |
+
plot_image
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
ANCHORS = [
|
20 |
+
[(0.28, 0.22), (0.38, 0.48), (0.9, 0.78)],
|
21 |
+
[(0.07, 0.15), (0.15, 0.11), (0.14, 0.29)],
|
22 |
+
[(0.02, 0.03), (0.04, 0.07), (0.08, 0.06)],
|
23 |
+
] # Note these have been rescaled to be between [0, 1]
|
24 |
+
|
25 |
+
fname = 'epoch=36-step=19166.ckpt'
|
26 |
+
checkpoint = torch.load(fname, map_location=torch.device('cpu'))
|
27 |
+
model_state_dict = checkpoint['state_dict']
|
28 |
+
model = YOLOv3(num_classes=20)
|
29 |
+
model.load_state_dict(model_state_dict)
|
30 |
+
|
31 |
+
IMAGE_SIZE = 416
|
32 |
+
S = [IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8]
|
33 |
+
anchors = ( torch.tensor(ANCHORS)
|
34 |
+
* torch.tensor(S).unsqueeze(1)\
|
35 |
+
.unsqueeze(1).repeat(1, 3, 2)
|
36 |
+
)
|
37 |
+
|
38 |
+
test_transforms = A.Compose(
|
39 |
+
[
|
40 |
+
A.LongestMaxSize(max_size=IMAGE_SIZE),
|
41 |
+
A.PadIfNeeded(
|
42 |
+
min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
|
43 |
+
),
|
44 |
+
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
|
45 |
+
ToTensorV2(),
|
46 |
+
],
|
47 |
+
)
|
48 |
+
def object_detector(input_image):
|
49 |
+
input_img = test_transforms(image=input_image)['image']
|
50 |
+
input_img = input_img.unsqueeze(0)
|
51 |
+
|
52 |
+
thresh = 0.6
|
53 |
+
iou_thresh = 0.5
|
54 |
+
with torch.no_grad():
|
55 |
+
out = model(input_img)
|
56 |
+
bboxes = []
|
57 |
+
for i in range(3):
|
58 |
+
_, _, S, _, _ = out[i].shape
|
59 |
+
anchor = anchors[i]
|
60 |
+
bboxes += cells_to_bboxes(
|
61 |
+
out[i], anchor, S=S, is_preds=True
|
62 |
+
)
|
63 |
+
nms_boxes = non_max_suppression(
|
64 |
+
bboxes[0], iou_threshold=iou_thresh,
|
65 |
+
threshold=thresh, box_format="midpoint",
|
66 |
+
)
|
67 |
+
fig = plot_image(input_img.squeeze(0).permute(1,2,0).detach().cpu(),
|
68 |
+
nms_boxes,
|
69 |
+
return_fig=True)
|
70 |
+
plt.gca().set(xticks=[], yticks=[], xticklabels=[], yticklabels=[])
|
71 |
+
plt.axis('off')
|
72 |
+
image_path = "plot.png"
|
73 |
+
fig.savefig(image_path)
|
74 |
+
plt.close()
|
75 |
+
return gr.update(value=image_path, visible=True)
|
76 |
+
|
77 |
+
# Define the input and output components for Gradio
|
78 |
+
input_image = gr.Image(label="Input image")
|
79 |
+
output_box = gr.Image(label="Output image")\
|
80 |
+
.style(width=428, height=428)
|
81 |
+
images_path = "examples/"
|
82 |
+
|
83 |
+
|
84 |
+
# Create the Gradio interface
|
85 |
+
gr.Interface(fn=object_detector, inputs=input_image, outputs=output_box,
|
86 |
+
examples=[[images_path + "000015.jpg"],
|
87 |
+
[images_path + "000017.jpg"],
|
88 |
+
[images_path + "000030.jpg"],
|
89 |
+
[images_path + "000069.jpg"],
|
90 |
+
[images_path + "000071.jpg"],
|
91 |
+
[images_path + "000084.jpg"],
|
92 |
+
[images_path + "000086.jpg"],
|
93 |
+
[images_path + "000088.jpg"],
|
94 |
+
[images_path + "000095.jpg"],
|
95 |
+
[images_path + "000100.jpg"],
|
96 |
+
],
|
97 |
+
).launch()
|
98 |
+
|
epoch=36-step=19166.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd0d67eac457f890a4c9557393e9b4c705dcbac707d30f9cbe658a1b7d00a678
|
3 |
+
size 740104313
|
examples/000015.jpg
ADDED
![]() |
examples/000017.jpg
ADDED
![]() |
examples/000030.jpg
ADDED
![]() |
examples/000069.jpg
ADDED
![]() |
examples/000071.jpg
ADDED
![]() |
examples/000084.jpg
ADDED
![]() |
examples/000086.jpg
ADDED
![]() |
examples/000088.jpg
ADDED
![]() |
examples/000095.jpg
ADDED
![]() |
examples/000100.jpg
ADDED
![]() |
examples/000186.jpg
ADDED
![]() |
model.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Implementation of YOLOv3 architecture
|
3 |
+
"""
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from torch import optim
|
8 |
+
|
9 |
+
"""
|
10 |
+
Information about architecture config:
|
11 |
+
Tuple is structured by (filters, kernel_size, stride)
|
12 |
+
Every conv is a same convolution.
|
13 |
+
List is structured by "B" indicating a residual block followed by the number of repeats
|
14 |
+
"S" is for scale prediction block and computing the yolo loss
|
15 |
+
"U" is for upsampling the feature map and concatenating with a previous layer
|
16 |
+
"""
|
17 |
+
config = [
|
18 |
+
(32, 3, 1),
|
19 |
+
(64, 3, 2),
|
20 |
+
["B", 1],
|
21 |
+
(128, 3, 2),
|
22 |
+
["B", 2],
|
23 |
+
(256, 3, 2),
|
24 |
+
["B", 8],
|
25 |
+
(512, 3, 2),
|
26 |
+
["B", 8],
|
27 |
+
(1024, 3, 2),
|
28 |
+
["B", 4], # To this point is Darknet-53
|
29 |
+
(512, 1, 1),
|
30 |
+
(1024, 3, 1),
|
31 |
+
"S",
|
32 |
+
(256, 1, 1),
|
33 |
+
"U",
|
34 |
+
(256, 1, 1),
|
35 |
+
(512, 3, 1),
|
36 |
+
"S",
|
37 |
+
(128, 1, 1),
|
38 |
+
"U",
|
39 |
+
(128, 1, 1),
|
40 |
+
(256, 3, 1),
|
41 |
+
"S",
|
42 |
+
]
|
43 |
+
|
44 |
+
|
45 |
+
class CNNBlock(nn.Module):
|
46 |
+
def __init__(self, in_channels, out_channels, bn_act=True, **kwargs):
|
47 |
+
super().__init__()
|
48 |
+
self.conv = nn.Conv2d(in_channels, out_channels, bias=not bn_act, **kwargs)
|
49 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
50 |
+
self.leaky = nn.LeakyReLU(0.1)
|
51 |
+
self.use_bn_act = bn_act
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
if self.use_bn_act:
|
55 |
+
return self.leaky(self.bn(self.conv(x)))
|
56 |
+
else:
|
57 |
+
return self.conv(x)
|
58 |
+
|
59 |
+
|
60 |
+
class ResidualBlock(nn.Module):
|
61 |
+
def __init__(self, channels, use_residual=True, num_repeats=1):
|
62 |
+
super().__init__()
|
63 |
+
self.layers = nn.ModuleList()
|
64 |
+
for repeat in range(num_repeats):
|
65 |
+
self.layers += [
|
66 |
+
nn.Sequential(
|
67 |
+
CNNBlock(channels, channels // 2, kernel_size=1),
|
68 |
+
CNNBlock(channels // 2, channels, kernel_size=3, padding=1),
|
69 |
+
)
|
70 |
+
]
|
71 |
+
|
72 |
+
self.use_residual = use_residual
|
73 |
+
self.num_repeats = num_repeats
|
74 |
+
|
75 |
+
def forward(self, x):
|
76 |
+
for layer in self.layers:
|
77 |
+
if self.use_residual:
|
78 |
+
x = x + layer(x)
|
79 |
+
else:
|
80 |
+
x = layer(x)
|
81 |
+
|
82 |
+
return x
|
83 |
+
|
84 |
+
|
85 |
+
class ScalePrediction(nn.Module):
|
86 |
+
def __init__(self, in_channels, num_classes):
|
87 |
+
super().__init__()
|
88 |
+
self.pred = nn.Sequential(
|
89 |
+
CNNBlock(in_channels, 2 * in_channels, kernel_size=3, padding=1),
|
90 |
+
CNNBlock(
|
91 |
+
2 * in_channels, (num_classes + 5) * 3, bn_act=False, kernel_size=1
|
92 |
+
),
|
93 |
+
)
|
94 |
+
self.num_classes = num_classes
|
95 |
+
|
96 |
+
def forward(self, x):
|
97 |
+
return (
|
98 |
+
self.pred(x)
|
99 |
+
.reshape(x.shape[0], 3, self.num_classes + 5, x.shape[2], x.shape[3])
|
100 |
+
.permute(0, 1, 3, 4, 2)
|
101 |
+
)
|
102 |
+
|
103 |
+
|
104 |
+
class YOLOv3(nn.Module):
|
105 |
+
def __init__(self, in_channels=3, num_classes=80):
|
106 |
+
super().__init__()
|
107 |
+
self.num_classes = num_classes
|
108 |
+
self.in_channels = in_channels
|
109 |
+
self.layers = self._create_conv_layers()
|
110 |
+
|
111 |
+
def forward(self, x):
|
112 |
+
outputs = [] # for each scale
|
113 |
+
route_connections = []
|
114 |
+
for layer in self.layers:
|
115 |
+
if isinstance(layer, ScalePrediction):
|
116 |
+
outputs.append(layer(x))
|
117 |
+
continue
|
118 |
+
|
119 |
+
x = layer(x)
|
120 |
+
|
121 |
+
if isinstance(layer, ResidualBlock) and layer.num_repeats == 8:
|
122 |
+
route_connections.append(x)
|
123 |
+
|
124 |
+
elif isinstance(layer, nn.Upsample):
|
125 |
+
x = torch.cat([x, route_connections[-1]], dim=1)
|
126 |
+
route_connections.pop()
|
127 |
+
|
128 |
+
return outputs
|
129 |
+
|
130 |
+
def _create_conv_layers(self):
|
131 |
+
layers = nn.ModuleList()
|
132 |
+
in_channels = self.in_channels
|
133 |
+
|
134 |
+
for module in config:
|
135 |
+
if isinstance(module, tuple):
|
136 |
+
out_channels, kernel_size, stride = module
|
137 |
+
layers.append(
|
138 |
+
CNNBlock(
|
139 |
+
in_channels,
|
140 |
+
out_channels,
|
141 |
+
kernel_size=kernel_size,
|
142 |
+
stride=stride,
|
143 |
+
padding=1 if kernel_size == 3 else 0,
|
144 |
+
)
|
145 |
+
)
|
146 |
+
in_channels = out_channels
|
147 |
+
|
148 |
+
elif isinstance(module, list):
|
149 |
+
num_repeats = module[1]
|
150 |
+
layers.append(ResidualBlock(in_channels, num_repeats=num_repeats,))
|
151 |
+
|
152 |
+
elif isinstance(module, str):
|
153 |
+
if module == "S":
|
154 |
+
layers += [
|
155 |
+
ResidualBlock(in_channels, use_residual=False, num_repeats=1),
|
156 |
+
CNNBlock(in_channels, in_channels // 2, kernel_size=1),
|
157 |
+
ScalePrediction(in_channels // 2, num_classes=self.num_classes),
|
158 |
+
]
|
159 |
+
in_channels = in_channels // 2
|
160 |
+
|
161 |
+
elif module == "U":
|
162 |
+
layers.append(nn.Upsample(scale_factor=2),)
|
163 |
+
in_channels = in_channels * 3
|
164 |
+
|
165 |
+
return layers
|
166 |
+
|
167 |
+
def configure_optimizers(self):
|
168 |
+
optimizer = optim.Adam(
|
169 |
+
self.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay
|
170 |
+
)
|
171 |
+
scheduler = OneCycleLR(
|
172 |
+
optimizer,
|
173 |
+
max_lr=self.best_lr,
|
174 |
+
steps_per_epoch=len(self.trainer.datamodule.train_dataloader()),
|
175 |
+
epochs=config.NUM_EPOCHS,
|
176 |
+
pct_start=5 / config.NUM_EPOCHS,
|
177 |
+
div_factor=100,
|
178 |
+
three_phase=False,
|
179 |
+
final_div_factor=100,
|
180 |
+
anneal_strategy="linear",
|
181 |
+
)
|
182 |
+
return [optimizer], [
|
183 |
+
{"scheduler": scheduler, "interval": "step", "frequency": 1}
|
184 |
+
]
|
185 |
+
|
186 |
+
|
187 |
+
if __name__ == "__main__":
|
188 |
+
num_classes = 20
|
189 |
+
IMAGE_SIZE = 416
|
190 |
+
model = YOLOv3(num_classes=num_classes)
|
191 |
+
x = torch.randn((2, 3, IMAGE_SIZE, IMAGE_SIZE))
|
192 |
+
out = model(x)
|
193 |
+
assert model(x)[0].shape == (2, 3, IMAGE_SIZE//32, IMAGE_SIZE//32, num_classes + 5)
|
194 |
+
assert model(x)[1].shape == (2, 3, IMAGE_SIZE//16, IMAGE_SIZE//16, num_classes + 5)
|
195 |
+
assert model(x)[2].shape == (2, 3, IMAGE_SIZE//8, IMAGE_SIZE//8, num_classes + 5)
|
196 |
+
print("Success!")
|
197 |
+
|
utils.py
ADDED
@@ -0,0 +1,590 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import config
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import matplotlib.patches as patches
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
import random
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from collections import Counter
|
10 |
+
from torch.utils.data import DataLoader
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
|
14 |
+
def iou_width_height(boxes1, boxes2):
|
15 |
+
"""
|
16 |
+
Parameters:
|
17 |
+
boxes1 (tensor): width and height of the first bounding boxes
|
18 |
+
boxes2 (tensor): width and height of the second bounding boxes
|
19 |
+
Returns:
|
20 |
+
tensor: Intersection over union of the corresponding boxes
|
21 |
+
"""
|
22 |
+
intersection = torch.min(boxes1[..., 0], boxes2[..., 0]) * torch.min(
|
23 |
+
boxes1[..., 1], boxes2[..., 1]
|
24 |
+
)
|
25 |
+
union = (
|
26 |
+
boxes1[..., 0] * boxes1[..., 1] + boxes2[..., 0] * boxes2[..., 1] - intersection
|
27 |
+
)
|
28 |
+
return intersection / union
|
29 |
+
|
30 |
+
|
31 |
+
def intersection_over_union(boxes_preds, boxes_labels, box_format="midpoint"):
|
32 |
+
"""
|
33 |
+
Video explanation of this function:
|
34 |
+
https://youtu.be/XXYG5ZWtjj0
|
35 |
+
|
36 |
+
This function calculates intersection over union (iou) given pred boxes
|
37 |
+
and target boxes.
|
38 |
+
|
39 |
+
Parameters:
|
40 |
+
boxes_preds (tensor): Predictions of Bounding Boxes (BATCH_SIZE, 4)
|
41 |
+
boxes_labels (tensor): Correct labels of Bounding Boxes (BATCH_SIZE, 4)
|
42 |
+
box_format (str): midpoint/corners, if boxes (x,y,w,h) or (x1,y1,x2,y2)
|
43 |
+
|
44 |
+
Returns:
|
45 |
+
tensor: Intersection over union for all examples
|
46 |
+
"""
|
47 |
+
|
48 |
+
if box_format == "midpoint":
|
49 |
+
box1_x1 = boxes_preds[..., 0:1] - boxes_preds[..., 2:3] / 2
|
50 |
+
box1_y1 = boxes_preds[..., 1:2] - boxes_preds[..., 3:4] / 2
|
51 |
+
box1_x2 = boxes_preds[..., 0:1] + boxes_preds[..., 2:3] / 2
|
52 |
+
box1_y2 = boxes_preds[..., 1:2] + boxes_preds[..., 3:4] / 2
|
53 |
+
box2_x1 = boxes_labels[..., 0:1] - boxes_labels[..., 2:3] / 2
|
54 |
+
box2_y1 = boxes_labels[..., 1:2] - boxes_labels[..., 3:4] / 2
|
55 |
+
box2_x2 = boxes_labels[..., 0:1] + boxes_labels[..., 2:3] / 2
|
56 |
+
box2_y2 = boxes_labels[..., 1:2] + boxes_labels[..., 3:4] / 2
|
57 |
+
|
58 |
+
if box_format == "corners":
|
59 |
+
box1_x1 = boxes_preds[..., 0:1]
|
60 |
+
box1_y1 = boxes_preds[..., 1:2]
|
61 |
+
box1_x2 = boxes_preds[..., 2:3]
|
62 |
+
box1_y2 = boxes_preds[..., 3:4]
|
63 |
+
box2_x1 = boxes_labels[..., 0:1]
|
64 |
+
box2_y1 = boxes_labels[..., 1:2]
|
65 |
+
box2_x2 = boxes_labels[..., 2:3]
|
66 |
+
box2_y2 = boxes_labels[..., 3:4]
|
67 |
+
|
68 |
+
x1 = torch.max(box1_x1, box2_x1)
|
69 |
+
y1 = torch.max(box1_y1, box2_y1)
|
70 |
+
x2 = torch.min(box1_x2, box2_x2)
|
71 |
+
y2 = torch.min(box1_y2, box2_y2)
|
72 |
+
|
73 |
+
intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0)
|
74 |
+
box1_area = abs((box1_x2 - box1_x1) * (box1_y2 - box1_y1))
|
75 |
+
box2_area = abs((box2_x2 - box2_x1) * (box2_y2 - box2_y1))
|
76 |
+
|
77 |
+
return intersection / (box1_area + box2_area - intersection + 1e-6)
|
78 |
+
|
79 |
+
|
80 |
+
def non_max_suppression(bboxes, iou_threshold, threshold, box_format="corners"):
|
81 |
+
"""
|
82 |
+
Video explanation of this function:
|
83 |
+
https://youtu.be/YDkjWEN8jNA
|
84 |
+
|
85 |
+
Does Non Max Suppression given bboxes
|
86 |
+
|
87 |
+
Parameters:
|
88 |
+
bboxes (list): list of lists containing all bboxes with each bboxes
|
89 |
+
specified as [class_pred, prob_score, x1, y1, x2, y2]
|
90 |
+
iou_threshold (float): threshold where predicted bboxes is correct
|
91 |
+
threshold (float): threshold to remove predicted bboxes (independent of IoU)
|
92 |
+
box_format (str): "midpoint" or "corners" used to specify bboxes
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
list: bboxes after performing NMS given a specific IoU threshold
|
96 |
+
"""
|
97 |
+
|
98 |
+
assert type(bboxes) == list
|
99 |
+
|
100 |
+
bboxes = [box for box in bboxes if box[1] > threshold]
|
101 |
+
bboxes = sorted(bboxes, key=lambda x: x[1], reverse=True)
|
102 |
+
bboxes_after_nms = []
|
103 |
+
|
104 |
+
while bboxes:
|
105 |
+
chosen_box = bboxes.pop(0)
|
106 |
+
|
107 |
+
bboxes = [
|
108 |
+
box
|
109 |
+
for box in bboxes
|
110 |
+
if box[0] != chosen_box[0]
|
111 |
+
or intersection_over_union(
|
112 |
+
torch.tensor(chosen_box[2:]),
|
113 |
+
torch.tensor(box[2:]),
|
114 |
+
box_format=box_format,
|
115 |
+
)
|
116 |
+
< iou_threshold
|
117 |
+
]
|
118 |
+
|
119 |
+
bboxes_after_nms.append(chosen_box)
|
120 |
+
|
121 |
+
return bboxes_after_nms
|
122 |
+
|
123 |
+
|
124 |
+
def mean_average_precision(
|
125 |
+
pred_boxes, true_boxes, iou_threshold=0.5, box_format="midpoint", num_classes=20
|
126 |
+
):
|
127 |
+
"""
|
128 |
+
Video explanation of this function:
|
129 |
+
https://youtu.be/FppOzcDvaDI
|
130 |
+
|
131 |
+
This function calculates mean average precision (mAP)
|
132 |
+
|
133 |
+
Parameters:
|
134 |
+
pred_boxes (list): list of lists containing all bboxes with each bboxes
|
135 |
+
specified as [train_idx, class_prediction, prob_score, x1, y1, x2, y2]
|
136 |
+
true_boxes (list): Similar as pred_boxes except all the correct ones
|
137 |
+
iou_threshold (float): threshold where predicted bboxes is correct
|
138 |
+
box_format (str): "midpoint" or "corners" used to specify bboxes
|
139 |
+
num_classes (int): number of classes
|
140 |
+
|
141 |
+
Returns:
|
142 |
+
float: mAP value across all classes given a specific IoU threshold
|
143 |
+
"""
|
144 |
+
|
145 |
+
# list storing all AP for respective classes
|
146 |
+
average_precisions = []
|
147 |
+
|
148 |
+
# used for numerical stability later on
|
149 |
+
epsilon = 1e-6
|
150 |
+
|
151 |
+
for c in tqdm(range(num_classes)):
|
152 |
+
detections = []
|
153 |
+
ground_truths = []
|
154 |
+
|
155 |
+
# Go through all predictions and targets,
|
156 |
+
# and only add the ones that belong to the
|
157 |
+
# current class c
|
158 |
+
for detection in pred_boxes:
|
159 |
+
if detection[1] == c:
|
160 |
+
detections.append(detection)
|
161 |
+
|
162 |
+
for true_box in true_boxes:
|
163 |
+
if true_box[1] == c:
|
164 |
+
ground_truths.append(true_box)
|
165 |
+
|
166 |
+
# find the amount of bboxes for each training example
|
167 |
+
# Counter here finds how many ground truth bboxes we get
|
168 |
+
# for each training example, so let's say img 0 has 3,
|
169 |
+
# img 1 has 5 then we will obtain a dictionary with:
|
170 |
+
# amount_bboxes = {0:3, 1:5}
|
171 |
+
amount_bboxes = Counter([gt[0] for gt in ground_truths])
|
172 |
+
|
173 |
+
# We then go through each key, val in this dictionary
|
174 |
+
# and convert to the following (w.r.t same example):
|
175 |
+
# ammount_bboxes = {0:torch.tensor[0,0,0], 1:torch.tensor[0,0,0,0,0]}
|
176 |
+
for key, val in amount_bboxes.items():
|
177 |
+
amount_bboxes[key] = torch.zeros(val)
|
178 |
+
|
179 |
+
# sort by box probabilities which is index 2
|
180 |
+
detections.sort(key=lambda x: x[2], reverse=True)
|
181 |
+
TP = torch.zeros((len(detections)))
|
182 |
+
FP = torch.zeros((len(detections)))
|
183 |
+
total_true_bboxes = len(ground_truths)
|
184 |
+
|
185 |
+
# If none exists for this class then we can safely skip
|
186 |
+
if total_true_bboxes == 0:
|
187 |
+
continue
|
188 |
+
|
189 |
+
for detection_idx, detection in enumerate(detections):
|
190 |
+
# Only take out the ground_truths that have the same
|
191 |
+
# training idx as detection
|
192 |
+
ground_truth_img = [
|
193 |
+
bbox for bbox in ground_truths if bbox[0] == detection[0]
|
194 |
+
]
|
195 |
+
|
196 |
+
num_gts = len(ground_truth_img)
|
197 |
+
best_iou = 0
|
198 |
+
|
199 |
+
for idx, gt in enumerate(ground_truth_img):
|
200 |
+
iou = intersection_over_union(
|
201 |
+
torch.tensor(detection[3:]),
|
202 |
+
torch.tensor(gt[3:]),
|
203 |
+
box_format=box_format,
|
204 |
+
)
|
205 |
+
|
206 |
+
if iou > best_iou:
|
207 |
+
best_iou = iou
|
208 |
+
best_gt_idx = idx
|
209 |
+
|
210 |
+
if best_iou > iou_threshold:
|
211 |
+
# only detect ground truth detection once
|
212 |
+
if amount_bboxes[detection[0]][best_gt_idx] == 0:
|
213 |
+
# true positive and add this bounding box to seen
|
214 |
+
TP[detection_idx] = 1
|
215 |
+
amount_bboxes[detection[0]][best_gt_idx] = 1
|
216 |
+
else:
|
217 |
+
FP[detection_idx] = 1
|
218 |
+
|
219 |
+
# if IOU is lower then the detection is a false positive
|
220 |
+
else:
|
221 |
+
FP[detection_idx] = 1
|
222 |
+
|
223 |
+
TP_cumsum = torch.cumsum(TP, dim=0)
|
224 |
+
FP_cumsum = torch.cumsum(FP, dim=0)
|
225 |
+
recalls = TP_cumsum / (total_true_bboxes + epsilon)
|
226 |
+
precisions = TP_cumsum / (TP_cumsum + FP_cumsum + epsilon)
|
227 |
+
precisions = torch.cat((torch.tensor([1]), precisions))
|
228 |
+
recalls = torch.cat((torch.tensor([0]), recalls))
|
229 |
+
# torch.trapz for numerical integration
|
230 |
+
average_precisions.append(torch.trapz(precisions, recalls))
|
231 |
+
|
232 |
+
return sum(average_precisions) / len(average_precisions)
|
233 |
+
|
234 |
+
|
235 |
+
def plot_image(image, boxes, return_fig=False):
|
236 |
+
"""Plots predicted bounding boxes on the image"""
|
237 |
+
cmap = plt.get_cmap("tab20b")
|
238 |
+
class_labels = config.COCO_LABELS if config.DATASET=='COCO' else config.PASCAL_CLASSES
|
239 |
+
colors = [cmap(i) for i in np.linspace(0, 1, len(class_labels))]
|
240 |
+
im = np.array(image)
|
241 |
+
height, width, _ = im.shape
|
242 |
+
|
243 |
+
# Create figure and axes
|
244 |
+
fig, ax = plt.subplots(1)
|
245 |
+
# Display the image
|
246 |
+
ax.imshow(im)
|
247 |
+
|
248 |
+
# box[0] is x midpoint, box[2] is width
|
249 |
+
# box[1] is y midpoint, box[3] is height
|
250 |
+
|
251 |
+
# Create a Rectangle patch
|
252 |
+
for box in boxes:
|
253 |
+
assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
|
254 |
+
class_pred = box[0]
|
255 |
+
box = box[2:]
|
256 |
+
upper_left_x = box[0] - box[2] / 2
|
257 |
+
upper_left_y = box[1] - box[3] / 2
|
258 |
+
rect = patches.Rectangle(
|
259 |
+
(upper_left_x * width, upper_left_y * height),
|
260 |
+
box[2] * width,
|
261 |
+
box[3] * height,
|
262 |
+
linewidth=2,
|
263 |
+
edgecolor=colors[int(class_pred)],
|
264 |
+
facecolor="none",
|
265 |
+
)
|
266 |
+
# Add the patch to the Axes
|
267 |
+
ax.add_patch(rect)
|
268 |
+
plt.text(
|
269 |
+
upper_left_x * width,
|
270 |
+
upper_left_y * height,
|
271 |
+
s=class_labels[int(class_pred)],
|
272 |
+
color="white",
|
273 |
+
verticalalignment="top",
|
274 |
+
bbox={"color": colors[int(class_pred)], "pad": 0},
|
275 |
+
)
|
276 |
+
|
277 |
+
if return_fig:
|
278 |
+
return fig
|
279 |
+
plt.show()
|
280 |
+
|
281 |
+
|
282 |
+
def get_evaluation_bboxes(
|
283 |
+
loader,
|
284 |
+
model,
|
285 |
+
iou_threshold,
|
286 |
+
anchors,
|
287 |
+
threshold,
|
288 |
+
box_format="midpoint",
|
289 |
+
):
|
290 |
+
# make sure model is in eval before get bboxes
|
291 |
+
model.eval()
|
292 |
+
train_idx = 0
|
293 |
+
all_pred_boxes = []
|
294 |
+
all_true_boxes = []
|
295 |
+
for batch_idx, (x, labels) in enumerate(tqdm(loader)):
|
296 |
+
x = x.to(config.DEVICE)
|
297 |
+
with torch.no_grad():
|
298 |
+
predictions = model(x)
|
299 |
+
|
300 |
+
batch_size = x.shape[0]
|
301 |
+
bboxes = [[] for _ in range(batch_size)]
|
302 |
+
for i in range(3):
|
303 |
+
S = predictions[i].shape[2]
|
304 |
+
anchor = torch.tensor([*anchors[i]]) * S
|
305 |
+
boxes_scale_i = cells_to_bboxes(
|
306 |
+
predictions[i], anchor, S=S, is_preds=True
|
307 |
+
)
|
308 |
+
for idx, (box) in enumerate(boxes_scale_i):
|
309 |
+
bboxes[idx] += box
|
310 |
+
|
311 |
+
# we just want one bbox for each label, not one for each scale
|
312 |
+
true_bboxes = cells_to_bboxes(
|
313 |
+
labels[2], anchor, S=S, is_preds=False
|
314 |
+
)
|
315 |
+
|
316 |
+
for idx in range(batch_size):
|
317 |
+
nms_boxes = non_max_suppression(
|
318 |
+
bboxes[idx],
|
319 |
+
iou_threshold=iou_threshold,
|
320 |
+
threshold=threshold,
|
321 |
+
box_format=box_format,
|
322 |
+
)
|
323 |
+
|
324 |
+
for nms_box in nms_boxes:
|
325 |
+
all_pred_boxes.append([train_idx] + nms_box)
|
326 |
+
|
327 |
+
for box in true_bboxes[idx]:
|
328 |
+
if box[1] > threshold:
|
329 |
+
all_true_boxes.append([train_idx] + box)
|
330 |
+
|
331 |
+
train_idx += 1
|
332 |
+
|
333 |
+
model.train()
|
334 |
+
return all_pred_boxes, all_true_boxes
|
335 |
+
|
336 |
+
|
337 |
+
def cells_to_bboxes(predictions, anchors, S, is_preds=True):
|
338 |
+
"""
|
339 |
+
Scales the predictions coming from the model to
|
340 |
+
be relative to the entire image such that they for example later
|
341 |
+
can be plotted or.
|
342 |
+
INPUT:
|
343 |
+
predictions: tensor of size (N, 3, S, S, num_classes+5)
|
344 |
+
anchors: the anchors used for the predictions
|
345 |
+
S: the number of cells the image is divided in on the width (and height)
|
346 |
+
is_preds: whether the input is predictions or the true bounding boxes
|
347 |
+
OUTPUT:
|
348 |
+
converted_bboxes: the converted boxes of sizes (N, num_anchors, S, S, 1+5) with class index,
|
349 |
+
object score, bounding box coordinates
|
350 |
+
"""
|
351 |
+
BATCH_SIZE = predictions.shape[0]
|
352 |
+
num_anchors = len(anchors)
|
353 |
+
box_predictions = predictions[..., 1:5]
|
354 |
+
if is_preds:
|
355 |
+
anchors = anchors.reshape(1, len(anchors), 1, 1, 2)
|
356 |
+
box_predictions[..., 0:2] = torch.sigmoid(box_predictions[..., 0:2])
|
357 |
+
box_predictions[..., 2:] = torch.exp(box_predictions[..., 2:]) * anchors
|
358 |
+
scores = torch.sigmoid(predictions[..., 0:1])
|
359 |
+
best_class = torch.argmax(predictions[..., 5:], dim=-1).unsqueeze(-1)
|
360 |
+
else:
|
361 |
+
scores = predictions[..., 0:1]
|
362 |
+
best_class = predictions[..., 5:6]
|
363 |
+
|
364 |
+
cell_indices = (
|
365 |
+
torch.arange(S)
|
366 |
+
.repeat(predictions.shape[0], 3, S, 1)
|
367 |
+
.unsqueeze(-1)
|
368 |
+
).to(config.DEVICE)
|
369 |
+
x = 1 / S * (box_predictions[..., 0:1] + cell_indices)
|
370 |
+
y = 1 / S * (box_predictions[..., 1:2] + cell_indices.permute(0, 1, 3, 2, 4))
|
371 |
+
w_h = 1 / S * box_predictions[..., 2:4]
|
372 |
+
converted_bboxes = torch.cat((best_class, scores, x, y, w_h), dim=-1)\
|
373 |
+
.reshape(BATCH_SIZE, num_anchors * S * S, 6)
|
374 |
+
return converted_bboxes.tolist()
|
375 |
+
|
376 |
+
def check_class_accuracy(model, batch, threshold, tag='train'):
|
377 |
+
model.eval()
|
378 |
+
tot_class_preds, correct_class = 0, 0
|
379 |
+
tot_noobj, correct_noobj = 0, 0
|
380 |
+
tot_obj, correct_obj = 0, 0
|
381 |
+
x, y = batch
|
382 |
+
|
383 |
+
x = x.to(config.DEVICE)
|
384 |
+
|
385 |
+
with torch.no_grad():
|
386 |
+
out = model(x)
|
387 |
+
|
388 |
+
for i in range(3):
|
389 |
+
y[i] = y[i].to(config.DEVICE)
|
390 |
+
obj = y[i][..., 0] == 1 # in paper this is Iobj_i
|
391 |
+
noobj = y[i][..., 0] == 0 # in paper this is Iobj_i
|
392 |
+
|
393 |
+
correct_class += torch.sum(
|
394 |
+
torch.argmax(out[i][..., 5:][obj], dim=-1) == y[i][..., 5][obj]
|
395 |
+
)
|
396 |
+
tot_class_preds += torch.sum(obj)
|
397 |
+
|
398 |
+
obj_preds = torch.sigmoid(out[i][..., 0]) > threshold
|
399 |
+
correct_obj += torch.sum(obj_preds[obj] == y[i][..., 0][obj])
|
400 |
+
tot_obj += torch.sum(obj)
|
401 |
+
correct_noobj += torch.sum(obj_preds[noobj] == y[i][..., 0][noobj])
|
402 |
+
tot_noobj += torch.sum(noobj)
|
403 |
+
|
404 |
+
ans = {
|
405 |
+
f"{tag}_class_accuracy": (correct_class/(tot_class_preds+1e-16))*100,
|
406 |
+
f"{tag}_no_obj_accuracy": (correct_noobj/(tot_noobj+1e-16))*100,
|
407 |
+
f"{tag}_obj_accuracy": (correct_obj/(tot_obj+1e-16))*100
|
408 |
+
}
|
409 |
+
model.train()
|
410 |
+
return ans
|
411 |
+
|
412 |
+
|
413 |
+
|
414 |
+
def get_mean_std(loader):
|
415 |
+
# var[X] = E[X**2] - E[X]**2
|
416 |
+
channels_sum, channels_sqrd_sum, num_batches = 0, 0, 0
|
417 |
+
|
418 |
+
for data, _ in tqdm(loader):
|
419 |
+
channels_sum += torch.mean(data, dim=[0, 2, 3])
|
420 |
+
channels_sqrd_sum += torch.mean(data ** 2, dim=[0, 2, 3])
|
421 |
+
num_batches += 1
|
422 |
+
|
423 |
+
mean = channels_sum / num_batches
|
424 |
+
std = (channels_sqrd_sum / num_batches - mean ** 2) ** 0.5
|
425 |
+
|
426 |
+
return mean, std
|
427 |
+
|
428 |
+
|
429 |
+
def save_checkpoint(model, optimizer, filename="my_checkpoint.pth.tar"):
|
430 |
+
print("=> Saving checkpoint")
|
431 |
+
checkpoint = {
|
432 |
+
"state_dict": model.state_dict(),
|
433 |
+
"optimizer": optimizer.state_dict(),
|
434 |
+
}
|
435 |
+
torch.save(checkpoint, filename)
|
436 |
+
|
437 |
+
|
438 |
+
def load_checkpoint(checkpoint_file, model, optimizer, lr, device):
|
439 |
+
print("=> Loading checkpoint")
|
440 |
+
checkpoint = torch.load(checkpoint_file, map_location=device)
|
441 |
+
model.load_state_dict(checkpoint["state_dict"])
|
442 |
+
optimizer.load_state_dict(checkpoint["optimizer"])
|
443 |
+
|
444 |
+
# If we don't do this then it will just have learning rate of old checkpoint
|
445 |
+
# and it will lead to many hours of debugging \:
|
446 |
+
for param_group in optimizer.param_groups:
|
447 |
+
param_group["lr"] = lr
|
448 |
+
|
449 |
+
|
450 |
+
def get_loaders(train_csv_path, test_csv_path):
|
451 |
+
from dataset import YOLODataset
|
452 |
+
|
453 |
+
IMAGE_SIZE = config.IMAGE_SIZE
|
454 |
+
train_dataset = YOLODataset(
|
455 |
+
train_csv_path,
|
456 |
+
transform=config.train_transforms,
|
457 |
+
S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8],
|
458 |
+
img_dir=config.IMG_DIR,
|
459 |
+
label_dir=config.LABEL_DIR,
|
460 |
+
anchors=config.ANCHORS,
|
461 |
+
)
|
462 |
+
test_dataset = YOLODataset(
|
463 |
+
test_csv_path,
|
464 |
+
transform=config.test_transforms,
|
465 |
+
S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8],
|
466 |
+
img_dir=config.IMG_DIR,
|
467 |
+
label_dir=config.LABEL_DIR,
|
468 |
+
anchors=config.ANCHORS,
|
469 |
+
)
|
470 |
+
train_loader = DataLoader(
|
471 |
+
dataset=train_dataset,
|
472 |
+
batch_size=config.BATCH_SIZE,
|
473 |
+
num_workers=config.NUM_WORKERS,
|
474 |
+
pin_memory=config.PIN_MEMORY,
|
475 |
+
shuffle=True,
|
476 |
+
drop_last=False,
|
477 |
+
)
|
478 |
+
test_loader = DataLoader(
|
479 |
+
dataset=test_dataset,
|
480 |
+
batch_size=config.BATCH_SIZE,
|
481 |
+
num_workers=config.NUM_WORKERS,
|
482 |
+
pin_memory=config.PIN_MEMORY,
|
483 |
+
shuffle=False,
|
484 |
+
drop_last=False,
|
485 |
+
)
|
486 |
+
|
487 |
+
train_eval_dataset = YOLODataset(
|
488 |
+
train_csv_path,
|
489 |
+
transform=config.test_transforms,
|
490 |
+
S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8],
|
491 |
+
img_dir=config.IMG_DIR,
|
492 |
+
label_dir=config.LABEL_DIR,
|
493 |
+
anchors=config.ANCHORS,
|
494 |
+
)
|
495 |
+
train_eval_loader = DataLoader(
|
496 |
+
dataset=train_eval_dataset,
|
497 |
+
batch_size=config.BATCH_SIZE,
|
498 |
+
num_workers=config.NUM_WORKERS,
|
499 |
+
pin_memory=config.PIN_MEMORY,
|
500 |
+
shuffle=False,
|
501 |
+
drop_last=False,
|
502 |
+
)
|
503 |
+
|
504 |
+
return train_loader, test_loader, train_eval_loader
|
505 |
+
|
506 |
+
def plot_couple_examples(model, batch, thresh, iou_thresh, anchors):
|
507 |
+
model.eval()
|
508 |
+
x, _ = batch
|
509 |
+
x = x.to(config.DEVICE)
|
510 |
+
batch_size = x.shape[0]
|
511 |
+
with torch.no_grad():
|
512 |
+
out = model(x)
|
513 |
+
bboxes = [[] for _ in range(x.shape[0])]
|
514 |
+
for i in range(3):
|
515 |
+
batch_size, _, S, _, _ = out[i].shape
|
516 |
+
anchor = anchors[i]
|
517 |
+
boxes_scale_i = cells_to_bboxes(
|
518 |
+
out[i], anchor, S=S, is_preds=True
|
519 |
+
)
|
520 |
+
for idx, (box) in enumerate(boxes_scale_i):
|
521 |
+
bboxes[idx] += box
|
522 |
+
|
523 |
+
model.train()
|
524 |
+
|
525 |
+
for i in range(batch_size//4):
|
526 |
+
nms_boxes = non_max_suppression(
|
527 |
+
bboxes[i], iou_threshold=iou_thresh,
|
528 |
+
threshold=thresh, box_format="midpoint",
|
529 |
+
)
|
530 |
+
plot_image(x[i].permute(1,2,0).detach().cpu(), nms_boxes)
|
531 |
+
|
532 |
+
|
533 |
+
|
534 |
+
def seed_everything(seed=42):
|
535 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
536 |
+
random.seed(seed)
|
537 |
+
np.random.seed(seed)
|
538 |
+
torch.manual_seed(seed)
|
539 |
+
torch.cuda.manual_seed(seed)
|
540 |
+
torch.cuda.manual_seed_all(seed)
|
541 |
+
torch.backends.cudnn.deterministic = True
|
542 |
+
torch.backends.cudnn.benchmark = False
|
543 |
+
|
544 |
+
|
545 |
+
def clip_coords(boxes, img_shape):
|
546 |
+
# Clip bounding xyxy bounding boxes to image shape (height, width)
|
547 |
+
boxes[:, 0].clamp_(0, img_shape[1]) # x1
|
548 |
+
boxes[:, 1].clamp_(0, img_shape[0]) # y1
|
549 |
+
boxes[:, 2].clamp_(0, img_shape[1]) # x2
|
550 |
+
boxes[:, 3].clamp_(0, img_shape[0]) # y2
|
551 |
+
|
552 |
+
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
|
553 |
+
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
554 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
555 |
+
y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw # top left x
|
556 |
+
y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh # top left y
|
557 |
+
y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw # bottom right x
|
558 |
+
y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh # bottom right y
|
559 |
+
return y
|
560 |
+
|
561 |
+
|
562 |
+
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
|
563 |
+
# Convert normalized segments into pixel segments, shape (n,2)
|
564 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
565 |
+
y[..., 0] = w * x[..., 0] + padw # top left x
|
566 |
+
y[..., 1] = h * x[..., 1] + padh # top left y
|
567 |
+
return y
|
568 |
+
|
569 |
+
def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
|
570 |
+
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
|
571 |
+
if clip:
|
572 |
+
clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip
|
573 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
574 |
+
y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w # x center
|
575 |
+
y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h # y center
|
576 |
+
y[..., 2] = (x[..., 2] - x[..., 0]) / w # width
|
577 |
+
y[..., 3] = (x[..., 3] - x[..., 1]) / h # height
|
578 |
+
return y
|
579 |
+
|
580 |
+
def clip_boxes(boxes, shape):
|
581 |
+
# Clip boxes (xyxy) to image shape (height, width)
|
582 |
+
if isinstance(boxes, torch.Tensor): # faster individually
|
583 |
+
boxes[..., 0].clamp_(0, shape[1]) # x1
|
584 |
+
boxes[..., 1].clamp_(0, shape[0]) # y1
|
585 |
+
boxes[..., 2].clamp_(0, shape[1]) # x2
|
586 |
+
boxes[..., 3].clamp_(0, shape[0]) # y2
|
587 |
+
else: # np.array (faster grouped)
|
588 |
+
boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2
|
589 |
+
boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2
|
590 |
+
|