Spaces:
Runtime error
Runtime error
File size: 6,020 Bytes
c87ccf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
"""
Implementation of YOLOv3 architecture
"""
import torch
import torch.nn as nn
from torch import optim
"""
Information about architecture config:
Tuple is structured by (filters, kernel_size, stride)
Every conv is a same convolution.
List is structured by "B" indicating a residual block followed by the number of repeats
"S" is for scale prediction block and computing the yolo loss
"U" is for upsampling the feature map and concatenating with a previous layer
"""
config = [
(32, 3, 1),
(64, 3, 2),
["B", 1],
(128, 3, 2),
["B", 2],
(256, 3, 2),
["B", 8],
(512, 3, 2),
["B", 8],
(1024, 3, 2),
["B", 4], # To this point is Darknet-53
(512, 1, 1),
(1024, 3, 1),
"S",
(256, 1, 1),
"U",
(256, 1, 1),
(512, 3, 1),
"S",
(128, 1, 1),
"U",
(128, 1, 1),
(256, 3, 1),
"S",
]
class CNNBlock(nn.Module):
def __init__(self, in_channels, out_channels, bn_act=True, **kwargs):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, bias=not bn_act, **kwargs)
self.bn = nn.BatchNorm2d(out_channels)
self.leaky = nn.LeakyReLU(0.1)
self.use_bn_act = bn_act
def forward(self, x):
if self.use_bn_act:
return self.leaky(self.bn(self.conv(x)))
else:
return self.conv(x)
class ResidualBlock(nn.Module):
def __init__(self, channels, use_residual=True, num_repeats=1):
super().__init__()
self.layers = nn.ModuleList()
for repeat in range(num_repeats):
self.layers += [
nn.Sequential(
CNNBlock(channels, channels // 2, kernel_size=1),
CNNBlock(channels // 2, channels, kernel_size=3, padding=1),
)
]
self.use_residual = use_residual
self.num_repeats = num_repeats
def forward(self, x):
for layer in self.layers:
if self.use_residual:
x = x + layer(x)
else:
x = layer(x)
return x
class ScalePrediction(nn.Module):
def __init__(self, in_channels, num_classes):
super().__init__()
self.pred = nn.Sequential(
CNNBlock(in_channels, 2 * in_channels, kernel_size=3, padding=1),
CNNBlock(
2 * in_channels, (num_classes + 5) * 3, bn_act=False, kernel_size=1
),
)
self.num_classes = num_classes
def forward(self, x):
return (
self.pred(x)
.reshape(x.shape[0], 3, self.num_classes + 5, x.shape[2], x.shape[3])
.permute(0, 1, 3, 4, 2)
)
class YOLOv3(nn.Module):
def __init__(self, in_channels=3, num_classes=80):
super().__init__()
self.num_classes = num_classes
self.in_channels = in_channels
self.layers = self._create_conv_layers()
def forward(self, x):
outputs = [] # for each scale
route_connections = []
for layer in self.layers:
if isinstance(layer, ScalePrediction):
outputs.append(layer(x))
continue
x = layer(x)
if isinstance(layer, ResidualBlock) and layer.num_repeats == 8:
route_connections.append(x)
elif isinstance(layer, nn.Upsample):
x = torch.cat([x, route_connections[-1]], dim=1)
route_connections.pop()
return outputs
def _create_conv_layers(self):
layers = nn.ModuleList()
in_channels = self.in_channels
for module in config:
if isinstance(module, tuple):
out_channels, kernel_size, stride = module
layers.append(
CNNBlock(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=1 if kernel_size == 3 else 0,
)
)
in_channels = out_channels
elif isinstance(module, list):
num_repeats = module[1]
layers.append(ResidualBlock(in_channels, num_repeats=num_repeats,))
elif isinstance(module, str):
if module == "S":
layers += [
ResidualBlock(in_channels, use_residual=False, num_repeats=1),
CNNBlock(in_channels, in_channels // 2, kernel_size=1),
ScalePrediction(in_channels // 2, num_classes=self.num_classes),
]
in_channels = in_channels // 2
elif module == "U":
layers.append(nn.Upsample(scale_factor=2),)
in_channels = in_channels * 3
return layers
def configure_optimizers(self):
optimizer = optim.Adam(
self.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay
)
scheduler = OneCycleLR(
optimizer,
max_lr=self.best_lr,
steps_per_epoch=len(self.trainer.datamodule.train_dataloader()),
epochs=config.NUM_EPOCHS,
pct_start=5 / config.NUM_EPOCHS,
div_factor=100,
three_phase=False,
final_div_factor=100,
anneal_strategy="linear",
)
return [optimizer], [
{"scheduler": scheduler, "interval": "step", "frequency": 1}
]
if __name__ == "__main__":
num_classes = 20
IMAGE_SIZE = 416
model = YOLOv3(num_classes=num_classes)
x = torch.randn((2, 3, IMAGE_SIZE, IMAGE_SIZE))
out = model(x)
assert model(x)[0].shape == (2, 3, IMAGE_SIZE//32, IMAGE_SIZE//32, num_classes + 5)
assert model(x)[1].shape == (2, 3, IMAGE_SIZE//16, IMAGE_SIZE//16, num_classes + 5)
assert model(x)[2].shape == (2, 3, IMAGE_SIZE//8, IMAGE_SIZE//8, num_classes + 5)
print("Success!")
|