File size: 2,186 Bytes
60930a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import albumentations as A
import cv2

from albumentations.pytorch import ToTensorV2

DATASET='PASCAL_VOC'
DEVICE = "cpu"
NUM_WORKERS = 0
BATCH_SIZE = 16
IMAGE_SIZE = 416
NUM_CLASSES = 20
CONF_THRESHOLD = 0.05
MAP_IOU_THRESH = 0.5
NMS_IOU_THRESH = 0.45
S = [IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8]
PIN_MEMORY = True
LOAD_MODEL = False
SAVE_MODEL = True

ANCHORS = [
    [(0.28, 0.22), (0.38, 0.48), (0.9, 0.78)],
    [(0.07, 0.15), (0.15, 0.11), (0.14, 0.29)],
    [(0.02, 0.03), (0.04, 0.07), (0.08, 0.06)],
]  # Note these have been rescaled to be between [0, 1]

means = [0.485, 0.456, 0.406]

scale = 1.1
test_transforms = A.Compose(
    [
        A.LongestMaxSize(max_size=IMAGE_SIZE),
        A.PadIfNeeded(
            min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
        ),
        A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
        ToTensorV2(),
    ],
)

PASCAL_CLASSES = [
    "aeroplane",
    "bicycle",
    "bird",
    "boat",
    "bottle",
    "bus",
    "car",
    "cat",
    "chair",
    "cow",
    "diningtable",
    "dog",
    "horse",
    "motorbike",
    "person",
    "pottedplant",
    "sheep",
    "sofa",
    "train",
    "tvmonitor"
]

COCO_LABELS = ['person',
 'bicycle',
 'car',
 'motorcycle',
 'airplane',
 'bus',
 'train',
 'truck',
 'boat',
 'traffic light',
 'fire hydrant',
 'stop sign',
 'parking meter',
 'bench',
 'bird',
 'cat',
 'dog',
 'horse',
 'sheep',
 'cow',
 'elephant',
 'bear',
 'zebra',
 'giraffe',
 'backpack',
 'umbrella',
 'handbag',
 'tie',
 'suitcase',
 'frisbee',
 'skis',
 'snowboard',
 'sports ball',
 'kite',
 'baseball bat',
 'baseball glove',
 'skateboard',
 'surfboard',
 'tennis racket',
 'bottle',
 'wine glass',
 'cup',
 'fork',
 'knife',
 'spoon',
 'bowl',
 'banana',
 'apple',
 'sandwich',
 'orange',
 'broccoli',
 'carrot',
 'hot dog',
 'pizza',
 'donut',
 'cake',
 'chair',
 'couch',
 'potted plant',
 'bed',
 'dining table',
 'toilet',
 'tv',
 'laptop',
 'mouse',
 'remote',
 'keyboard',
 'cell phone',
 'microwave',
 'oven',
 'toaster',
 'sink',
 'refrigerator',
 'book',
 'clock',
 'vase',
 'scissors',
 'teddy bear',
 'hair drier',
 'toothbrush'
]