File size: 4,286 Bytes
4a78d34
 
 
 
 
c8da037
4a78d34
c8da037
4a78d34
 
8471f6d
4a78d34
8ad1a09
1d1f5e9
 
4a78d34
 
 
 
 
ed6229f
4a78d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ad1a09
 
4a78d34
 
 
 
 
 
 
ed6229f
4a78d34
 
aa87c61
ed6229f
4410a31
 
4a78d34
bb10943
11c3aa7
 
4a78d34
 
853a51e
 
4a78d34
d5a5b95
 
8471f6d
d5a5b95
 
 
 
4a78d34
6fa5c81
d5a5b95
 
 
 
 
 
 
 
c8da037
 
 
d5a5b95
66f1c0c
6fa5c81
 
 
c8da037
 
43ae4c7
c8da037
4a78d34
66f1c0c
c8da037
9c55d6d
8ad1a09
c8da037
ed6229f
4a78d34
d5a5b95
c8da037
 
 
 
4a78d34
853a51e
4a78d34
 
 
 
853a51e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    REPRODUCIBILITY_TEXT,
    INTRODUCTION_TEXT,
    ABOUT_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css, custom_js
from src.display.utils import (
    COLS,
    ST_BENCHMARK_COLS,
    AGENTIC_BENCHMARK_COLS,
    EVAL_COLS,
    AutoEvalColumn,
    fields,
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df, TASK_NAME_INVERSE_MAP
from src.submission.submit import add_new_eval


def restart_space():
    API.restart_space(repo_id=REPO_ID)

### Space initialisation
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()


ST_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, ST_BENCHMARK_COLS)
AGENTIC_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, AGENTIC_BENCHMARK_COLS)

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

def init_leaderboard(dataframe, benchmark_type):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    
    AutoEvalColumnSubset = [c for c in fields(AutoEvalColumn) if ((c.name=="Model") or (TASK_NAME_INVERSE_MAP.get(c.name, dict()).get("type", "")==benchmark_type))]

    return gr.components.Dataframe(
        value=dataframe,
        datatype=[c.type for c in AutoEvalColumnSubset],
        column_widths=["150px" if c.name != "Model" else "250px" for c in AutoEvalColumnSubset],
        wrap=False,
    )

black_logo_path = "src/assets/logo-icon-black.png"
white_logo_path = "src/assets/logo-icon-white.png"

demo = gr.Blocks(
    css=custom_css,
    js=custom_js,
    theme=gr.themes.Default(primary_hue=gr.themes.colors.pink),
    fill_height=True,
    fill_width=True,
)
with demo:
    gr.HTML(f"""
    <div id="page-header">
        <div id="header-container">
            <div id="left-container">
                <img id="black-logo" src="/gradio_api/file={black_logo_path}">
                <img id="white-logo" src="/gradio_api/file={white_logo_path}">
            </div>
            <div id="centre-container">
                <h1 style="margin-bottom: 0.25rem;">{TITLE}</h1>
                <p style="color:#eb088a; margin:0; font-size:1.2rem;">Explore Interactive Results &amp; Traces</p>
            </div>
            <div id="right-container">
            </div>
        </div>
    </div>
    """)
    # gr.HTML(TITLE)
    # with gr.Group(elem_classes="intro-block"):
    #     gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
    # gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="intro-text")

    with gr.Tabs(elem_classes=["leaderboard-table", "tab-buttons"]) as tabs:
        with gr.TabItem("Base Benchmarks", elem_classes="llm-benchmark-tab-table", id=0):
            leaderboard = init_leaderboard(ST_LEADERBOARD_DF, "base")

        with gr.TabItem("Agentic Benchmarks", elem_classes="llm-benchmark-tab-table", id=1):
            leaderboard = init_leaderboard(AGENTIC_LEADERBOARD_DF, "agentic")

        with gr.TabItem("About", elem_classes="llm-benchmark-tab-table", id=2):
            gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")

        with gr.TabItem("Reproducibility", elem_classes="llm-benchmark-tab-table", id=3):
            gr.Markdown(REPRODUCIBILITY_TEXT, elem_classes="markdown-text")

assets = [black_logo_path, white_logo_path]

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(allowed_paths=assets)