xeon27
commited on
Commit
·
aa87c61
1
Parent(s):
37ebe4e
Remove commented code
Browse files- app.py +1 -125
- src/display/utils.py +1 -13
- src/leaderboard/read_evals.py +0 -13
- src/populate.py +0 -6
app.py
CHANGED
@@ -62,36 +62,8 @@ AGENTIC_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PAT
|
|
62 |
def init_leaderboard(dataframe, benchmark_type):
|
63 |
if dataframe is None or dataframe.empty:
|
64 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
|
|
65 |
AutoEvalColumnSubset = [c for c in fields(AutoEvalColumn) if ((c.name=="Model") or (TASK_NAME_INVERSE_MAP.get(c.name, dict()).get("type", "")==benchmark_type))]
|
66 |
-
# return Leaderboard(
|
67 |
-
# value=dataframe,
|
68 |
-
# datatype=[c.type for c in AutoEvalColumnSubset],
|
69 |
-
# select_columns=SelectColumns(
|
70 |
-
# default_selection=[c.name for c in AutoEvalColumnSubset if c.displayed_by_default],
|
71 |
-
# cant_deselect=[c.name for c in AutoEvalColumnSubset if c.never_hidden],
|
72 |
-
# label="Select Columns to Display:",
|
73 |
-
# ),
|
74 |
-
# # # search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
75 |
-
# search_columns=[AutoEvalColumn.model.name,],
|
76 |
-
# hide_columns=[c.name for c in AutoEvalColumnSubset if c.hidden],
|
77 |
-
# # filter_columns=[
|
78 |
-
# # ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
79 |
-
# # ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
80 |
-
# # ColumnFilter(
|
81 |
-
# # AutoEvalColumn.params.name,
|
82 |
-
# # type="slider",
|
83 |
-
# # min=0.01,
|
84 |
-
# # max=150,
|
85 |
-
# # label="Select the number of parameters (B)",
|
86 |
-
# # ),
|
87 |
-
# # ColumnFilter(
|
88 |
-
# # AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=False
|
89 |
-
# # ),
|
90 |
-
# # ],
|
91 |
-
# filter_columns=[],
|
92 |
-
# bool_checkboxgroup_label="Hide models",
|
93 |
-
# interactive=False,
|
94 |
-
# )
|
95 |
|
96 |
return gr.components.Dataframe(
|
97 |
value=dataframe,
|
@@ -115,102 +87,6 @@ with demo:
|
|
115 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
116 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
117 |
|
118 |
-
# with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
119 |
-
# with gr.Column():
|
120 |
-
# with gr.Row():
|
121 |
-
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
122 |
-
|
123 |
-
# with gr.Column():
|
124 |
-
# with gr.Accordion(
|
125 |
-
# f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
126 |
-
# open=False,
|
127 |
-
# ):
|
128 |
-
# with gr.Row():
|
129 |
-
# finished_eval_table = gr.components.Dataframe(
|
130 |
-
# value=finished_eval_queue_df,
|
131 |
-
# headers=EVAL_COLS,
|
132 |
-
# datatype=EVAL_TYPES,
|
133 |
-
# row_count=5,
|
134 |
-
# )
|
135 |
-
# with gr.Accordion(
|
136 |
-
# f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
137 |
-
# open=False,
|
138 |
-
# ):
|
139 |
-
# with gr.Row():
|
140 |
-
# running_eval_table = gr.components.Dataframe(
|
141 |
-
# value=running_eval_queue_df,
|
142 |
-
# headers=EVAL_COLS,
|
143 |
-
# datatype=EVAL_TYPES,
|
144 |
-
# row_count=5,
|
145 |
-
# )
|
146 |
-
|
147 |
-
# with gr.Accordion(
|
148 |
-
# f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
149 |
-
# open=False,
|
150 |
-
# ):
|
151 |
-
# with gr.Row():
|
152 |
-
# pending_eval_table = gr.components.Dataframe(
|
153 |
-
# value=pending_eval_queue_df,
|
154 |
-
# headers=EVAL_COLS,
|
155 |
-
# datatype=EVAL_TYPES,
|
156 |
-
# row_count=5,
|
157 |
-
# )
|
158 |
-
# with gr.Row():
|
159 |
-
# gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
160 |
-
|
161 |
-
# with gr.Row():
|
162 |
-
# with gr.Column():
|
163 |
-
# model_name_textbox = gr.Textbox(label="Model name")
|
164 |
-
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
165 |
-
# model_type = gr.Dropdown(
|
166 |
-
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
167 |
-
# label="Model type",
|
168 |
-
# multiselect=False,
|
169 |
-
# value=None,
|
170 |
-
# interactive=True,
|
171 |
-
# )
|
172 |
-
|
173 |
-
# with gr.Column():
|
174 |
-
# precision = gr.Dropdown(
|
175 |
-
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
176 |
-
# label="Precision",
|
177 |
-
# multiselect=False,
|
178 |
-
# value="float16",
|
179 |
-
# interactive=True,
|
180 |
-
# )
|
181 |
-
# weight_type = gr.Dropdown(
|
182 |
-
# choices=[i.value.name for i in WeightType],
|
183 |
-
# label="Weights type",
|
184 |
-
# multiselect=False,
|
185 |
-
# value="Original",
|
186 |
-
# interactive=True,
|
187 |
-
# )
|
188 |
-
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
189 |
-
|
190 |
-
# submit_button = gr.Button("Submit Eval")
|
191 |
-
# submission_result = gr.Markdown()
|
192 |
-
# submit_button.click(
|
193 |
-
# add_new_eval,
|
194 |
-
# [
|
195 |
-
# model_name_textbox,
|
196 |
-
# base_model_name_textbox,
|
197 |
-
# revision_name_textbox,
|
198 |
-
# precision,
|
199 |
-
# weight_type,
|
200 |
-
# model_type,
|
201 |
-
# ],
|
202 |
-
# submission_result,
|
203 |
-
# )
|
204 |
-
|
205 |
-
# with gr.Row():
|
206 |
-
# with gr.Accordion("📙 Citation", open=False):
|
207 |
-
# citation_button = gr.Textbox(
|
208 |
-
# value=CITATION_BUTTON_TEXT,
|
209 |
-
# label=CITATION_BUTTON_LABEL,
|
210 |
-
# lines=20,
|
211 |
-
# elem_id="citation-button",
|
212 |
-
# show_copy_button=True,
|
213 |
-
# )
|
214 |
|
215 |
scheduler = BackgroundScheduler()
|
216 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
|
|
62 |
def init_leaderboard(dataframe, benchmark_type):
|
63 |
if dataframe is None or dataframe.empty:
|
64 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
65 |
+
|
66 |
AutoEvalColumnSubset = [c for c in fields(AutoEvalColumn) if ((c.name=="Model") or (TASK_NAME_INVERSE_MAP.get(c.name, dict()).get("type", "")==benchmark_type))]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
return gr.components.Dataframe(
|
69 |
value=dataframe,
|
|
|
87 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
88 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
scheduler = BackgroundScheduler()
|
92 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
src/display/utils.py
CHANGED
@@ -23,22 +23,10 @@ class ColumnContent:
|
|
23 |
## Leaderboard columns
|
24 |
auto_eval_column_dict = []
|
25 |
# Init
|
26 |
-
# auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
27 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
28 |
-
#Scores
|
29 |
-
# auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "markdown", True)])
|
30 |
for task in Tasks:
|
31 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "markdown", True)])
|
32 |
-
# # Model information
|
33 |
-
# auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
34 |
-
# auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
35 |
-
# auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
36 |
-
# auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
37 |
-
# auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
38 |
-
# auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
39 |
-
# auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
40 |
-
# auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
41 |
-
# auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
42 |
|
43 |
# We use make dataclass to dynamically fill the scores from Tasks
|
44 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
|
23 |
## Leaderboard columns
|
24 |
auto_eval_column_dict = []
|
25 |
# Init
|
|
|
26 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
27 |
+
# Scores
|
|
|
28 |
for task in Tasks:
|
29 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "markdown", True)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# We use make dataclass to dynamically fill the scores from Tasks
|
32 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
src/leaderboard/read_evals.py
CHANGED
@@ -113,21 +113,9 @@ class EvalResult:
|
|
113 |
|
114 |
def to_dict(self):
|
115 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
116 |
-
# average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
117 |
data_dict = {
|
118 |
"eval_name": self.eval_name, # not a column, just a save name,
|
119 |
-
# AutoEvalColumn.precision.name: self.precision.value.name,
|
120 |
-
# AutoEvalColumn.model_type.name: self.model_type.value.name,
|
121 |
-
# AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
122 |
-
# AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
123 |
-
# AutoEvalColumn.architecture.name: self.architecture,
|
124 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
125 |
-
# AutoEvalColumn.revision.name: self.revision,
|
126 |
-
# AutoEvalColumn.average.name: average,
|
127 |
-
# AutoEvalColumn.license.name: self.license,
|
128 |
-
# AutoEvalColumn.likes.name: self.likes,
|
129 |
-
# AutoEvalColumn.params.name: self.num_params,
|
130 |
-
# AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
131 |
}
|
132 |
|
133 |
for task in Tasks:
|
@@ -185,7 +173,6 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
185 |
# Store results of same eval together
|
186 |
eval_name = eval_result.eval_name
|
187 |
if eval_name in eval_results.keys():
|
188 |
-
# eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
189 |
eval_results[eval_name].results.update(eval_result.results)
|
190 |
else:
|
191 |
eval_results[eval_name] = eval_result
|
|
|
113 |
|
114 |
def to_dict(self):
|
115 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
|
|
116 |
data_dict = {
|
117 |
"eval_name": self.eval_name, # not a column, just a save name,
|
|
|
|
|
|
|
|
|
|
|
118 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
}
|
120 |
|
121 |
for task in Tasks:
|
|
|
173 |
# Store results of same eval together
|
174 |
eval_name = eval_result.eval_name
|
175 |
if eval_name in eval_results.keys():
|
|
|
176 |
eval_results[eval_name].results.update(eval_result.results)
|
177 |
else:
|
178 |
eval_results[eval_name] = eval_result
|
src/populate.py
CHANGED
@@ -41,23 +41,17 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
41 |
|
42 |
df = pd.DataFrame.from_records(all_data_json)
|
43 |
|
44 |
-
# df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
45 |
df = df[cols].round(decimals=2)
|
46 |
|
47 |
# subset for model and benchmark cols
|
48 |
df = df[[AutoEvalColumn.model.name] + benchmark_cols]
|
49 |
|
50 |
-
# # filter out if any of the benchmarks have not been produced
|
51 |
-
# df = df[has_no_nan_values(df, benchmark_cols)]
|
52 |
df = df.fillna(EMPTY_SYMBOL)
|
53 |
|
54 |
# make values clickable and link to log files
|
55 |
for col in benchmark_cols:
|
56 |
df[col] = df[[AutoEvalColumn.model.name, col]].apply(lambda x: f"[{x[col]}]({get_inspect_log_url(model_name=x[AutoEvalColumn.model.name].split('>')[1].split('<')[0], benchmark_name=TASK_NAME_INVERSE_MAP[col]['name'])})" if x[col] != EMPTY_SYMBOL else x[col], axis=1)
|
57 |
|
58 |
-
# # make task names clickable and link to inspect-evals repository - this creates issues later
|
59 |
-
# df = df.rename(columns={col: f"[{col}]({TASK_NAME_INVERSE_MAP[col]['source']})" for col in benchmark_cols})
|
60 |
-
|
61 |
return df
|
62 |
|
63 |
|
|
|
41 |
|
42 |
df = pd.DataFrame.from_records(all_data_json)
|
43 |
|
|
|
44 |
df = df[cols].round(decimals=2)
|
45 |
|
46 |
# subset for model and benchmark cols
|
47 |
df = df[[AutoEvalColumn.model.name] + benchmark_cols]
|
48 |
|
|
|
|
|
49 |
df = df.fillna(EMPTY_SYMBOL)
|
50 |
|
51 |
# make values clickable and link to log files
|
52 |
for col in benchmark_cols:
|
53 |
df[col] = df[[AutoEvalColumn.model.name, col]].apply(lambda x: f"[{x[col]}]({get_inspect_log_url(model_name=x[AutoEvalColumn.model.name].split('>')[1].split('<')[0], benchmark_name=TASK_NAME_INVERSE_MAP[col]['name'])})" if x[col] != EMPTY_SYMBOL else x[col], axis=1)
|
54 |
|
|
|
|
|
|
|
55 |
return df
|
56 |
|
57 |
|