Spaces:
Running
Running
add ability to group by question text
#2
by
myshirk
- opened
app.py
CHANGED
@@ -37,14 +37,16 @@ df = get_data()
|
|
37 |
# Streamlit UI
|
38 |
st.title("π CGD Survey Explorer (Live DB)")
|
39 |
|
40 |
-
|
|
|
|
|
41 |
country_options = sorted(df["country"].dropna().unique())
|
42 |
year_options = sorted(df["year"].dropna().unique())
|
43 |
|
44 |
selected_countries = st.sidebar.multiselect("Select Country/Countries", country_options)
|
45 |
selected_years = st.sidebar.multiselect("Select Year(s)", year_options)
|
46 |
-
|
47 |
keyword = st.sidebar.text_input("Keyword Search", "")
|
|
|
48 |
|
49 |
# Apply filters
|
50 |
filtered = df[
|
@@ -53,21 +55,44 @@ filtered = df[
|
|
53 |
(df["question_text"].str.contains(keyword, case=False, na=False))
|
54 |
]
|
55 |
|
56 |
-
#
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
else:
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
st.dataframe(filtered[["country", "year", "question_text", "answer_text"]])
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
st.info("No matching questions found.")
|
73 |
|
|
|
37 |
# Streamlit UI
|
38 |
st.title("π CGD Survey Explorer (Live DB)")
|
39 |
|
40 |
+
st.sidebar.header("π Filter Questions")
|
41 |
+
|
42 |
+
# Multiselect filters with default = show all
|
43 |
country_options = sorted(df["country"].dropna().unique())
|
44 |
year_options = sorted(df["year"].dropna().unique())
|
45 |
|
46 |
selected_countries = st.sidebar.multiselect("Select Country/Countries", country_options)
|
47 |
selected_years = st.sidebar.multiselect("Select Year(s)", year_options)
|
|
|
48 |
keyword = st.sidebar.text_input("Keyword Search", "")
|
49 |
+
group_by_question = st.sidebar.checkbox("Group by Question Text")
|
50 |
|
51 |
# Apply filters
|
52 |
filtered = df[
|
|
|
55 |
(df["question_text"].str.contains(keyword, case=False, na=False))
|
56 |
]
|
57 |
|
58 |
+
# Output
|
59 |
+
if group_by_question:
|
60 |
+
st.subheader("π Grouped by Question Text")
|
61 |
+
|
62 |
+
grouped = (
|
63 |
+
filtered.groupby("question_text")
|
64 |
+
.agg({
|
65 |
+
"country": lambda x: sorted(set(x)),
|
66 |
+
"year": lambda x: sorted(set(x)),
|
67 |
+
"answer_text": lambda x: list(x)[:3] # preview up to 3 answers
|
68 |
+
})
|
69 |
+
.reset_index()
|
70 |
+
.rename(columns={
|
71 |
+
"country": "Countries",
|
72 |
+
"year": "Years",
|
73 |
+
"answer_text": "Sample Answers"
|
74 |
+
})
|
75 |
+
)
|
76 |
+
|
77 |
+
st.dataframe(grouped)
|
78 |
+
|
79 |
+
if grouped.empty:
|
80 |
+
st.info("No questions found with current filters.")
|
81 |
+
|
82 |
else:
|
83 |
+
# Context-aware heading
|
84 |
+
heading_parts = []
|
85 |
+
if selected_countries:
|
86 |
+
heading_parts.append("Countries: " + ", ".join(selected_countries))
|
87 |
+
if selected_years:
|
88 |
+
heading_parts.append("Years: " + ", ".join(map(str, selected_years)))
|
89 |
+
if heading_parts:
|
90 |
+
st.markdown("### Results for " + " | ".join(heading_parts))
|
91 |
+
else:
|
92 |
+
st.markdown("### Results for All Countries and Years")
|
93 |
|
94 |
+
st.dataframe(filtered[["country", "year", "question_text", "answer_text"]])
|
|
|
95 |
|
96 |
+
if filtered.empty:
|
97 |
+
st.info("No matching questions found.")
|
|
|
98 |
|