urroxyz's picture
Update app.py
0ceadd8 verified
raw
history blame
8.76 kB
import logging
import os
import subprocess
import sys
import warnings
from dataclasses import dataclass
from pathlib import Path
from typing import Optional, Tuple
from urllib.request import urlopen, urlretrieve
import streamlit as st
from huggingface_hub import HfApi, whoami
from torch.jit import TracerWarning
from transformers import AutoConfig, GenerationConfig
# Suppress local TorchScript tracer warnings
warnings.filterwarnings("ignore", category=TracerWarning)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class Config:
"""Application configuration."""
hf_token: str
hf_username: str
transformers_version: str = "3.5.0"
hf_base_url: str = "https://huggingface.co"
transformers_base_url: str = (
"https://github.com/huggingface/transformers.js/archive/refs"
)
repo_path: Path = Path("./transformers.js")
@classmethod
def from_env(cls) -> "Config":
"""Create config from environment variables and secrets."""
system_token = st.secrets.get("HF_TOKEN")
user_token = st.session_state.get("user_hf_token")
if user_token:
hf_username = whoami(token=user_token)["name"]
else:
hf_username = (
os.getenv("SPACE_AUTHOR_NAME") or whoami(token=system_token)["name"]
)
hf_token = user_token or system_token
if not hf_token:
raise ValueError("HF_TOKEN must be set")
return cls(hf_token=hf_token, hf_username=hf_username)
class ModelConverter:
"""Handles model conversion and upload operations."""
def __init__(self, config: Config):
self.config = config
self.api = HfApi(token=config.hf_token)
def _get_ref_type(self) -> str:
"""Determine the reference type for the transformers repository."""
url = f"{self.config.transformers_base_url}/tags/{self.config.transformers_version}.tar.gz"
try:
return "tags" if urlopen(url).getcode() == 200 else "heads"
except Exception as e:
logger.warning(f"Failed to check tags, defaulting to heads: {e}")
return "heads"
def setup_repository(self) -> None:
"""Download and setup transformers.js repo if needed."""
if self.config.repo_path.exists():
return
ref_type = self._get_ref_type()
archive_url = f"{self.config.transformers_base_url}/{ref_type}/{self.config.transformers_version}.tar.gz"
archive_path = Path(f"./transformers_{self.config.transformers_version}.tar.gz")
try:
urlretrieve(archive_url, archive_path)
self._extract_archive(archive_path)
logger.info("Repository downloaded and extracted successfully")
except Exception as e:
raise RuntimeError(f"Failed to setup repository: {e}")
finally:
archive_path.unlink(missing_ok=True)
def _extract_archive(self, archive_path: Path) -> None:
"""Extract the downloaded archive."""
import tarfile, tempfile
with tempfile.TemporaryDirectory() as tmp_dir:
with tarfile.open(archive_path, "r:gz") as tar:
tar.extractall(tmp_dir)
extracted_folder = next(Path(tmp_dir).iterdir())
extracted_folder.rename(self.config.repo_path)
def convert_model(self, input_model_id: str) -> Tuple[bool, Optional[str]]:
"""
Convert the model to ONNX, always exporting attention maps.
Relocate generation params, suppress tracer warnings, and
filter out relocation/tracer warnings from stderr.
"""
try:
# 1. Prepare a local folder for config tweaks
model_dir = self.config.repo_path / "models" / input_model_id
model_dir.mkdir(parents=True, exist_ok=True)
# 2. Move any generation parameters into generation_config.json
base_cfg = AutoConfig.from_pretrained(input_model_id)
gen_cfg = GenerationConfig.from_model_config(base_cfg)
for k in gen_cfg.to_dict():
if hasattr(base_cfg, k):
setattr(base_cfg, k, None)
base_cfg.save_pretrained(model_dir)
gen_cfg.save_pretrained(model_dir)
# 3. Set verbose logging via env var (no --debug flag)
env = os.environ.copy()
env["TRANSFORMERS_VERBOSITY"] = "debug"
# 4. Build and run the conversion command
cmd = [
sys.executable,
"-m", "scripts.convert",
"--quantize",
"--trust_remote_code",
"--model_id", input_model_id,
"--output_attentions",
]
result = subprocess.run(
cmd,
cwd=self.config.repo_path,
capture_output=True,
text=True,
env=env,
)
# 5. Filter out spurious warnings from stderr
filtered = []
for ln in result.stderr.splitlines():
if ln.startswith("Moving the following attributes"):
continue
if "TracerWarning" in ln:
continue
filtered.append(ln)
stderr = "\n".join(filtered)
if result.returncode != 0:
return False, stderr
return True, stderr
except Exception as e:
return False, str(e)
def upload_model(self, input_model_id: str, output_model_id: str) -> Optional[str]:
"""Upload the converted model to Hugging Face Hub."""
model_folder = self.config.repo_path / "models" / input_model_id
try:
self.api.create_repo(output_model_id, exist_ok=True, private=False)
readme_path = model_folder / "README.md"
if not readme_path.exists():
readme_path.write_text(self.generate_readme(input_model_id))
self.api.upload_folder(folder_path=str(model_folder), repo_id=output_model_id)
return None
except Exception as e:
return str(e)
finally:
import shutil
shutil.rmtree(model_folder, ignore_errors=True)
def generate_readme(self, imi: str) -> str:
return (
"---\n"
"library_name: transformers.js\n"
"base_model:\n"
f"- {imi}\n"
"---\n\n"
f"# {imi.split('/')[-1]} (ONNX)\n\n"
f"This is an ONNX version of [{imi}](https://huggingface.co/{imi}). "
"Converted with attention maps and verbose export logs.\n"
)
def main():
"""Streamlit application entry point."""
st.write("## Convert a Hugging Face model to ONNX (with attentions & debug logs)")
try:
config = Config.from_env()
converter = ModelConverter(config)
converter.setup_repository()
input_model_id = st.text_input(
"Enter the Hugging Face model ID to convert, e.g. `EleutherAI/pythia-14m`"
)
if not input_model_id:
return
st.text_input(
"Optional: Your Hugging Face write token (for uploading to your namespace).",
type="password",
key="user_hf_token",
)
if config.hf_username == input_model_id.split("/")[0]:
same_repo = st.checkbox("Upload ONNX weights to the same repository?")
else:
same_repo = False
model_name = input_model_id.split("/")[-1]
output_model_id = f"{config.hf_username}/{model_name}"
if not same_repo:
output_model_id += "-ONNX"
output_url = f"{config.hf_base_url}/{output_model_id}"
st.write("Destination repository:")
st.code(output_url, language="plaintext")
if not st.button("Proceed", type="primary"):
return
with st.spinner("Converting model…"):
success, stderr = converter.convert_model(input_model_id)
if not success:
st.error(f"Conversion failed: {stderr}")
return
st.success("Conversion successful!")
st.code(stderr)
with st.spinner("Uploading model…"):
error = converter.upload_model(input_model_id, output_model_id)
if error:
st.error(f"Upload failed: {error}")
return
st.success("Upload successful!")
st.link_button(f"Go to {output_model_id}", output_url, type="primary")
except Exception as e:
logger.exception("Application error")
st.error(f"An error occurred: {e}")
if __name__ == "__main__":
main()