File size: 8,755 Bytes
1364cbe
5a87d26
ccc9d98
58a0ecb
de5f9d5
1364cbe
 
 
 
1b48b29
 
8fbbd7f
de5f9d5
 
 
0ceadd8
de5f9d5
d088d6c
1364cbe
 
 
 
 
 
0ceadd8
1364cbe
 
c951ed8
1364cbe
 
1e3c553
d088d6c
1364cbe
 
 
 
0ceadd8
8fbbd7f
5a87d26
 
 
 
 
 
 
2af96bc
 
 
1364cbe
 
 
 
0ceadd8
 
1364cbe
 
 
 
 
0ceadd8
1364cbe
 
 
 
 
 
 
 
0ceadd8
1364cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ceadd8
b2ef551
1364cbe
 
 
0ceadd8
 
1364cbe
 
0ceadd8
 
 
 
 
1364cbe
0ceadd8
de5f9d5
 
0ceadd8
 
b2ef551
 
 
0ceadd8
 
b2ef551
 
0ceadd8
 
b2ef551
 
0ceadd8
 
b0efbfd
 
 
 
 
 
 
 
1364cbe
b0efbfd
1364cbe
 
 
b2ef551
d088d6c
0ceadd8
 
 
 
 
 
 
 
 
b2ef551
0ceadd8
1364cbe
d10f691
 
0ceadd8
1364cbe
 
 
 
0ceadd8
b2ef551
1364cbe
 
0ceadd8
 
 
b2ef551
1364cbe
 
 
 
0ceadd8
 
d088d6c
de5f9d5
afb14c6
 
 
 
 
 
 
 
0ceadd8
afb14c6
 
0ceadd8
1364cbe
0ceadd8
 
 
1364cbe
 
0ceadd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1364cbe
0ceadd8
 
 
d088d6c
0ceadd8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import logging
import os
import subprocess
import sys
import warnings
from dataclasses import dataclass
from pathlib import Path
from typing import Optional, Tuple
from urllib.request import urlopen, urlretrieve

import streamlit as st
from huggingface_hub import HfApi, whoami
from torch.jit import TracerWarning
from transformers import AutoConfig, GenerationConfig

# Suppress local TorchScript tracer warnings
warnings.filterwarnings("ignore", category=TracerWarning)

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


@dataclass
class Config:
    """Application configuration."""
    hf_token: str
    hf_username: str
    transformers_version: str = "3.5.0"
    hf_base_url: str = "https://huggingface.co"
    transformers_base_url: str = (
        "https://github.com/huggingface/transformers.js/archive/refs"
    )
    repo_path: Path = Path("./transformers.js")

    @classmethod
    def from_env(cls) -> "Config":
        """Create config from environment variables and secrets."""
        system_token = st.secrets.get("HF_TOKEN")
        user_token = st.session_state.get("user_hf_token")
        if user_token:
            hf_username = whoami(token=user_token)["name"]
        else:
            hf_username = (
                os.getenv("SPACE_AUTHOR_NAME") or whoami(token=system_token)["name"]
            )
        hf_token = user_token or system_token
        if not hf_token:
            raise ValueError("HF_TOKEN must be set")
        return cls(hf_token=hf_token, hf_username=hf_username)


class ModelConverter:
    """Handles model conversion and upload operations."""

    def __init__(self, config: Config):
        self.config = config
        self.api = HfApi(token=config.hf_token)

    def _get_ref_type(self) -> str:
        """Determine the reference type for the transformers repository."""
        url = f"{self.config.transformers_base_url}/tags/{self.config.transformers_version}.tar.gz"
        try:
            return "tags" if urlopen(url).getcode() == 200 else "heads"
        except Exception as e:
            logger.warning(f"Failed to check tags, defaulting to heads: {e}")
            return "heads"

    def setup_repository(self) -> None:
        """Download and setup transformers.js repo if needed."""
        if self.config.repo_path.exists():
            return
        ref_type = self._get_ref_type()
        archive_url = f"{self.config.transformers_base_url}/{ref_type}/{self.config.transformers_version}.tar.gz"
        archive_path = Path(f"./transformers_{self.config.transformers_version}.tar.gz")
        try:
            urlretrieve(archive_url, archive_path)
            self._extract_archive(archive_path)
            logger.info("Repository downloaded and extracted successfully")
        except Exception as e:
            raise RuntimeError(f"Failed to setup repository: {e}")
        finally:
            archive_path.unlink(missing_ok=True)

    def _extract_archive(self, archive_path: Path) -> None:
        """Extract the downloaded archive."""
        import tarfile, tempfile
        with tempfile.TemporaryDirectory() as tmp_dir:
            with tarfile.open(archive_path, "r:gz") as tar:
                tar.extractall(tmp_dir)
            extracted_folder = next(Path(tmp_dir).iterdir())
            extracted_folder.rename(self.config.repo_path)

    def convert_model(self, input_model_id: str) -> Tuple[bool, Optional[str]]:
        """
        Convert the model to ONNX, always exporting attention maps.
        Relocate generation params, suppress tracer warnings, and
        filter out relocation/tracer warnings from stderr.
        """
        try:
            # 1. Prepare a local folder for config tweaks
            model_dir = self.config.repo_path / "models" / input_model_id
            model_dir.mkdir(parents=True, exist_ok=True)

            # 2. Move any generation parameters into generation_config.json
            base_cfg = AutoConfig.from_pretrained(input_model_id)
            gen_cfg = GenerationConfig.from_model_config(base_cfg)
            for k in gen_cfg.to_dict():
                if hasattr(base_cfg, k):
                    setattr(base_cfg, k, None)
            base_cfg.save_pretrained(model_dir)
            gen_cfg.save_pretrained(model_dir)

            # 3. Set verbose logging via env var (no --debug flag)
            env = os.environ.copy()
            env["TRANSFORMERS_VERBOSITY"] = "debug"

            # 4. Build and run the conversion command
            cmd = [
                sys.executable,
                "-m", "scripts.convert",
                "--quantize",
                "--trust_remote_code",
                "--model_id", input_model_id,
                "--output_attentions",
            ]
            result = subprocess.run(
                cmd,
                cwd=self.config.repo_path,
                capture_output=True,
                text=True,
                env=env,
            )

            # 5. Filter out spurious warnings from stderr
            filtered = []
            for ln in result.stderr.splitlines():
                if ln.startswith("Moving the following attributes"):
                    continue
                if "TracerWarning" in ln:
                    continue
                filtered.append(ln)
            stderr = "\n".join(filtered)

            if result.returncode != 0:
                return False, stderr
            return True, stderr

        except Exception as e:
            return False, str(e)

    def upload_model(self, input_model_id: str, output_model_id: str) -> Optional[str]:
        """Upload the converted model to Hugging Face Hub."""
        model_folder = self.config.repo_path / "models" / input_model_id
        try:
            self.api.create_repo(output_model_id, exist_ok=True, private=False)
            readme_path = model_folder / "README.md"
            if not readme_path.exists():
                readme_path.write_text(self.generate_readme(input_model_id))
            self.api.upload_folder(folder_path=str(model_folder), repo_id=output_model_id)
            return None
        except Exception as e:
            return str(e)
        finally:
            import shutil
            shutil.rmtree(model_folder, ignore_errors=True)

    def generate_readme(self, imi: str) -> str:
        return (
            "---\n"
            "library_name: transformers.js\n"
            "base_model:\n"
            f"- {imi}\n"
            "---\n\n"
            f"# {imi.split('/')[-1]} (ONNX)\n\n"
            f"This is an ONNX version of [{imi}](https://huggingface.co/{imi}). "
            "Converted with attention maps and verbose export logs.\n"
        )


def main():
    """Streamlit application entry point."""
    st.write("## Convert a Hugging Face model to ONNX (with attentions & debug logs)")

    try:
        config = Config.from_env()
        converter = ModelConverter(config)
        converter.setup_repository()

        input_model_id = st.text_input(
            "Enter the Hugging Face model ID to convert, e.g. `EleutherAI/pythia-14m`"
        )
        if not input_model_id:
            return

        st.text_input(
            "Optional: Your Hugging Face write token (for uploading to your namespace).",
            type="password",
            key="user_hf_token",
        )

        if config.hf_username == input_model_id.split("/")[0]:
            same_repo = st.checkbox("Upload ONNX weights to the same repository?")
        else:
            same_repo = False

        model_name = input_model_id.split("/")[-1]
        output_model_id = f"{config.hf_username}/{model_name}"
        if not same_repo:
            output_model_id += "-ONNX"

        output_url = f"{config.hf_base_url}/{output_model_id}"
        st.write("Destination repository:")
        st.code(output_url, language="plaintext")

        if not st.button("Proceed", type="primary"):
            return

        with st.spinner("Converting model…"):
            success, stderr = converter.convert_model(input_model_id)
            if not success:
                st.error(f"Conversion failed: {stderr}")
                return
            st.success("Conversion successful!")
            st.code(stderr)

        with st.spinner("Uploading model…"):
            error = converter.upload_model(input_model_id, output_model_id)
            if error:
                st.error(f"Upload failed: {error}")
                return
            st.success("Upload successful!")
            st.link_button(f"Go to {output_model_id}", output_url, type="primary")

    except Exception as e:
        logger.exception("Application error")
        st.error(f"An error occurred: {e}")


if __name__ == "__main__":
    main()