File size: 8,959 Bytes
7be1f70 074ef51 7be1f70 074ef51 7be1f70 074ef51 7be1f70 074ef51 7be1f70 074ef51 7be1f70 074ef51 7be1f70 074ef51 7be1f70 074ef51 7be1f70 074ef51 7be1f70 074ef51 7be1f70 074ef51 7be1f70 074ef51 7be1f70 074ef51 7be1f70 074ef51 7be1f70 074ef51 7be1f70 074ef51 7be1f70 074ef51 7be1f70 074ef51 7be1f70 074ef51 7be1f70 074ef51 7be1f70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.responses import FileResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
import cv2
import numpy as np
from ultralytics import YOLO
import os
import shutil
from typing import Optional
import uuid
import base64
from io import BytesIO
from PIL import Image
# Create FastAPI app
app = FastAPI(
title="YOLO Intrusion Detection API",
description="API for detecting intrusions using YOLOv8 model",
version="1.0.0"
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Load YOLO model
model_name = 'yolov8n.pt'
model = None # Will be loaded on startup
# Define trapezoidal restricted area
trapezoid_pts = np.array([[250, 150], [400, 150], [450, 300], [200, 300]], np.int32)
# Create temp directory for uploads if it doesn't exist
os.makedirs("temp", exist_ok=True)
def is_inside_trapezoid(box, trapezoid_pts):
"""Check if the center of a detected object is inside the trapezoidal area."""
x1, y1, x2, y2 = box
cx, cy = int((x1 + x2) / 2), int((y1 + y2) / 2) # Calculate center of detected object
# Use point-in-polygon check
return cv2.pointPolygonTest(trapezoid_pts, (cx, cy), False) >= 0
def process_image(frame):
"""Process a single image and return the annotated image and intrusion data."""
global model
# Perform object detection
results = model.predict(frame, conf=0.5)
annotated_frame = results[0].plot() # Draw bounding boxes
# Draw trapezoidal restricted area
cv2.polylines(annotated_frame, [trapezoid_pts.reshape((-1, 1, 2))], isClosed=True, color=(0, 0, 255), thickness=2)
isAlert = {'alert': [False, ""], 'personCount': 0}
classInIntrusion = ['person', 'bicycle', 'car', 'motorcycle']
detections = []
# Loop through detected objects
for r in results:
for box, cls, conf in zip(r.boxes.xyxy, r.boxes.cls, r.boxes.conf):
class_id = int(cls.item()) # Convert to integer
confidence = float(conf.item())
x1, y1, x2, y2 = map(int, box.tolist())
class_name = classInIntrusion[class_id] if class_id < len(classInIntrusion) else f"class_{class_id}"
# Add to detections list
detections.append({
"class": class_name,
"confidence": confidence,
"bbox": [x1, y1, x2, y2],
"in_restricted_area": is_inside_trapezoid(box.tolist(), trapezoid_pts)
})
if class_id == 0: # Person
isAlert['personCount'] += 1
if class_id in [0, 1, 2, 3]: # Person, bicycle, car, motorcycle
if is_inside_trapezoid(box.tolist(), trapezoid_pts):
isAlert['alert'] = [True, classInIntrusion[class_id]]
# Mark the intrusion with a red box
cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), (0, 0, 255), 3)
# Add alert text on the frame
alert_text = f"Intrusion Alert: {isAlert['alert'][0]}, Object: {isAlert['alert'][1]}, Persons: {isAlert['personCount']}"
cv2.putText(annotated_frame, alert_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
# Convert the response
response = {
"intrusion_detected": isAlert['alert'][0],
"intruding_object": isAlert['alert'][1],
"person_count": isAlert['personCount'],
"detections": detections
}
return annotated_frame, response
def encode_image_to_base64(image):
"""Convert an OpenCV image to base64 encoded string."""
_, buffer = cv2.imencode('.jpg', image)
return base64.b64encode(buffer).decode('utf-8')
@app.on_event("startup")
async def startup_event():
"""Load the YOLO model when the app starts."""
global model
model = YOLO(model_name)
print(f"Model {model_name} loaded successfully")
@app.get("/")
async def root():
"""Root endpoint."""
return {
"message": "YOLO Intrusion Detection API is running",
"documentation": "/docs",
"endpoints": {
"process_image": "/process_image/",
"process_video": "/process_video/",
"health": "/health/"
}
}
@app.get("/health/")
async def health_check():
"""Health check endpoint."""
return {"status": "healthy", "model": model_name}
@app.post("/process_image/")
async def api_process_image(file: UploadFile = File(...), return_image: bool = True):
"""
Process an image file and detect intrusions.
Args:
file: The image file to process
return_image: If True, returns the annotated image as base64
Returns:
JSON with detection results and optionally the annotated image
"""
# Check file extension
if not file.filename.lower().endswith(('.png', '.jpg', '.jpeg')):
raise HTTPException(status_code=400, detail="Only PNG and JPG images are supported")
# Read and process image
contents = await file.read()
nparr = np.frombuffer(contents, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if img is None:
raise HTTPException(status_code=400, detail="Could not decode image")
# Process the image
annotated_img, results = process_image(img)
# Optionally include the annotated image
if return_image:
results["image"] = encode_image_to_base64(annotated_img)
return results
@app.post("/process_video/")
async def api_process_video(file: UploadFile = File(...)):
"""
Process a video file and detect intrusions.
Args:
file: The video file to process
Returns:
JSON with detection results and path to processed video
"""
# Check file extension
if not file.filename.lower().endswith(('.mp4', '.avi', '.mov')):
raise HTTPException(status_code=400, detail="Only MP4, AVI, and MOV videos are supported")
# Create a unique temporary file name
temp_input = f"temp/input_{uuid.uuid4()}.mp4"
temp_output = f"temp/output_{uuid.uuid4()}.mp4"
# Save uploaded file
with open(temp_input, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
# Process the video
cap = cv2.VideoCapture(temp_input)
if not cap.isOpened():
os.remove(temp_input)
raise HTTPException(status_code=400, detail="Could not open video file")
# Get video properties
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
# Create output video file
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(temp_output, fourcc, fps, (width, height))
# Process frames
final_results = {
"intrusion_detected": False,
"intruding_objects": set(),
"max_person_count": 0,
"frames_processed": 0,
"total_detections": 0
}
while True:
ret, frame = cap.read()
if not ret:
break
# Process the frame
annotated_frame, frame_results = process_image(frame)
# Update final results
final_results["frames_processed"] += 1
final_results["total_detections"] += len(frame_results["detections"])
if frame_results["intrusion_detected"]:
final_results["intrusion_detected"] = True
if frame_results["intruding_object"]:
final_results["intruding_objects"].add(frame_results["intruding_object"])
final_results["max_person_count"] = max(
final_results["max_person_count"],
frame_results["person_count"]
)
# Write the frame
out.write(annotated_frame)
# Release resources
cap.release()
out.release()
# Convert set to list for JSON serialization
final_results["intruding_objects"] = list(final_results["intruding_objects"])
# Clean up input file
os.remove(temp_input)
return {
"results": final_results,
"video_path": f"/download_video/{os.path.basename(temp_output)}"
}
@app.get("/download_video/{filename}")
async def download_video(filename: str):
"""
Download the processed video file.
Args:
filename: The name of the processed video file
Returns:
The video file
"""
file_path = f"temp/{filename}"
if not os.path.exists(file_path):
raise HTTPException(status_code=404, detail="Video not found")
return FileResponse(file_path, media_type="video/mp4", filename="processed_video.mp4")
# # For local development
# if __name__ == "__main__":
# uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True) |