initial commit
Browse files
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from ultralytics import YOLO
|
5 |
+
import time
|
6 |
+
|
7 |
+
# Load YOLO model
|
8 |
+
model = YOLO("yolov8n.pt") # Updated to correct model name
|
9 |
+
|
10 |
+
# Define trapezoidal restricted area (top-left, top-right, bottom-right, bottom-left)
|
11 |
+
trapezoid_pts = np.array([[250, 150], [400, 150], [450, 300], [200, 300]], np.int32)
|
12 |
+
|
13 |
+
def is_inside_trapezoid(box, trapezoid_pts):
|
14 |
+
"""Check if the center of a detected object is inside the trapezoidal area."""
|
15 |
+
x1, y1, x2, y2 = box
|
16 |
+
cx, cy = int((x1 + x2) / 2), int((y1 + y2) / 2)
|
17 |
+
return cv2.pointPolygonTest(trapezoid_pts, (cx, cy), False) >= 0
|
18 |
+
|
19 |
+
def detect_objects(frame):
|
20 |
+
if frame is None:
|
21 |
+
return np.zeros((480, 640, 3), dtype=np.uint8), "No input frame"
|
22 |
+
|
23 |
+
results = model.predict(frame, conf=0.5)
|
24 |
+
annotated_frame = results[0].plot()
|
25 |
+
|
26 |
+
# Draw the trapezoid area
|
27 |
+
cv2.polylines(annotated_frame, [trapezoid_pts.reshape((-1, 1, 2))], isClosed=True, color=(0, 0, 255), thickness=2)
|
28 |
+
|
29 |
+
isAlert = {"alert": [False, ""], "personCount": 0}
|
30 |
+
classInIntrusion = ["person", "bicycle", "car", "motorcycle"]
|
31 |
+
|
32 |
+
for r in results:
|
33 |
+
for box, cls in zip(r.boxes.xyxy, r.boxes.cls):
|
34 |
+
class_id = int(cls.item())
|
35 |
+
if class_id == 0: # Person
|
36 |
+
isAlert["personCount"] += 1
|
37 |
+
if class_id in [0, 1, 2, 3]: # Person, bicycle, car, motorcycle
|
38 |
+
if is_inside_trapezoid(box.tolist(), trapezoid_pts):
|
39 |
+
isAlert["alert"] = [True, classInIntrusion[class_id]]
|
40 |
+
# Mark the intrusion with a red box
|
41 |
+
x1, y1, x2, y2 = map(int, box.tolist())
|
42 |
+
cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), (0, 0, 255), 3)
|
43 |
+
|
44 |
+
# Add alert text on the frame
|
45 |
+
alert_text = f"Intrusion Alert: {isAlert['alert'][0]}, Object: {isAlert['alert'][1]}, Persons: {isAlert['personCount']}"
|
46 |
+
cv2.putText(annotated_frame, alert_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
|
47 |
+
|
48 |
+
return annotated_frame, alert_text
|
49 |
+
|
50 |
+
def webcam_feed():
|
51 |
+
cap = cv2.VideoCapture(0)
|
52 |
+
|
53 |
+
# Check if the webcam opened successfully
|
54 |
+
if not cap.isOpened():
|
55 |
+
return np.zeros((480, 640, 3), dtype=np.uint8), "Failed to open webcam"
|
56 |
+
|
57 |
+
while True:
|
58 |
+
ret, frame = cap.read()
|
59 |
+
if not ret:
|
60 |
+
break
|
61 |
+
|
62 |
+
# Process frame
|
63 |
+
result_frame, alert_message = detect_objects(frame)
|
64 |
+
|
65 |
+
# Return the processed frame and alert message
|
66 |
+
yield result_frame, alert_message
|
67 |
+
|
68 |
+
# Create the Gradio interface with webcam
|
69 |
+
demo = gr.Interface(
|
70 |
+
fn=webcam_feed,
|
71 |
+
inputs=[],
|
72 |
+
outputs=[
|
73 |
+
gr.Image(label="Detection Output"),
|
74 |
+
gr.Textbox(label="Alert Status")
|
75 |
+
],
|
76 |
+
live=True,
|
77 |
+
title="YOLO Intrusion Detection",
|
78 |
+
description="Real-time detection of persons and vehicles inside a restricted trapezoidal area.",
|
79 |
+
allow_flagging="never"
|
80 |
+
)
|
81 |
+
|
82 |
+
if __name__ == "__main__":
|
83 |
+
demo.queue(max_size=1).launch()
|