bookscanner_app / app.py
ugolefoo's picture
Update app.py
cece48d verified
raw
history blame
10.1 kB
import cv2
import numpy as np
import pytesseract
import requests
import pandas as pd
import gradio as gr
import uuid
import os
# ──────────────────────────────────────────────────────────────
# 1. Utility: Detect rectangular contours (approximate book covers)
# ──────────────────────────────────────────────────────────────
def detect_book_regions(image: np.ndarray, min_area=5000, eps_coef=0.02):
"""
Detect rectangular regions in an image that likely correspond to book covers.
Returns a list of bounding boxes: (x, y, w, h).
"""
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
edges = cv2.Canny(blurred, 50, 150)
# Dilate + erode to close gaps
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
closed = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel)
contours, _ = cv2.findContours(
closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
boxes = []
for cnt in contours:
area = cv2.contourArea(cnt)
if area < min_area:
continue
peri = cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, eps_coef * peri, True)
# Keep only quadrilaterals
if len(approx) == 4:
x, y, w, h = cv2.boundingRect(approx)
ar = w / float(h)
# Filter by typical book-cover aspect ratios
# (you can loosen/tighten these ranges if needed)
if 0.4 < ar < 0.9 or 1.0 < ar < 1.6:
boxes.append((x, y, w, h))
# Sort left→right, then top→bottom
boxes = sorted(boxes, key=lambda b: (b[1], b[0]))
return boxes
# ──────────────────────────────────────────────────────────────
# 2. OCR on a cropped region
# ──────────────────────────────────────────────────────────────
def ocr_on_region(image: np.ndarray, box: tuple):
"""
Crop the image to the given box and run Tesseract OCR.
Return the raw OCR text.
"""
x, y, w, h = box
cropped = image[y : y + h, x : x + w]
gray_crop = cv2.cvtColor(cropped, cv2.COLOR_BGR2GRAY)
_, thresh_crop = cv2.threshold(
gray_crop, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
)
custom_config = r"--oem 3 --psm 6"
text = pytesseract.image_to_string(thresh_crop, config=custom_config)
return text.strip()
# ──────────────────────────────────────────────────────────────
# 3. OCR on the full image (fallback)
# ──────────────────────────────────────────────────────────────
def ocr_full_image(image: np.ndarray):
"""
Run OCR on the entire image if no covers were detected.
Return the full OCR text (string).
"""
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Optionally threshold entire image as well
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
custom_config = r"--oem 3 --psm 6"
text = pytesseract.image_to_string(thresh, config=custom_config)
return text.strip()
# ──────────────────────────────────────────────────────────────
# 4. Query OpenLibrary API
# ──────────────────────────────────────────────────────────────
def query_openlibrary(title_text: str, author_text: str = None):
"""
Search OpenLibrary by title (and optional author).
Return a dict with title, author_name, publisher, first_publish_year, or None.
"""
base_url = "https://openlibrary.org/search.json"
params = {"title": title_text}
if author_text:
params["author"] = author_text
try:
resp = requests.get(base_url, params=params, timeout=5)
resp.raise_for_status()
data = resp.json()
if data.get("docs"):
doc = data["docs"][0]
return {
"title": doc.get("title", ""),
"author_name": ", ".join(doc.get("author_name", [])),
"publisher": ", ".join(doc.get("publisher", [])),
"first_publish_year": doc.get("first_publish_year", ""),
}
except Exception as e:
print(f"OpenLibrary query failed: {e}")
return None
# ──────────────────────────────────────────────────────────────
# 5. Process one uploaded image
# ──────────────────────────────────────────────────────────────
def process_image(image_file):
"""
Gradio passes a PIL image or numpy array. Convert to OpenCV BGR,
detect covers β†’ OCR β†’ OpenLibrary.
If no covers are found, fall back to OCR on the full image once.
Write CSV to a temp file and return (DataFrame, filepath).
"""
# Convert PIL to OpenCV BGR
img = np.array(image_file)[:, :, ::-1].copy()
# 1) Try to detect individual covers
boxes = detect_book_regions(img)
records = []
if boxes:
# If we found boxes, run OCR + lookup for each
for box in boxes:
ocr_text = ocr_on_region(img, box)
lines = [l.strip() for l in ocr_text.splitlines() if l.strip()]
if not lines:
continue
title_guess = lines[0]
author_guess = lines[1] if len(lines) > 1 else None
meta = query_openlibrary(title_guess, author_guess)
if meta:
records.append(meta)
else:
# No OpenLibrary match β†’ still include OCR result
records.append(
{
"title": title_guess,
"author_name": author_guess or "",
"publisher": "",
"first_publish_year": "",
}
)
else:
# 2) FALLBACK: no boxes detected β†’ OCR on full image once
full_text = ocr_full_image(img)
lines = [l.strip() for l in full_text.splitlines() if l.strip()]
if lines:
# Use first line as title guess, second (if any) as author guess
title_guess = lines[0]
author_guess = lines[1] if len(lines) > 1 else None
meta = query_openlibrary(title_guess, author_guess)
if meta:
records.append(meta)
else:
records.append(
{
"title": title_guess,
"author_name": author_guess or "",
"publisher": "",
"first_publish_year": "",
}
)
# If lines is empty, records remains empty
# Build DataFrame (even if empty)
df = pd.DataFrame(records, columns=["title", "author_name", "publisher", "first_publish_year"])
csv_bytes = df.to_csv(index=False).encode()
# Write CSV to a unique temporary file
unique_name = f"books_{uuid.uuid4().hex}.csv"
temp_path = os.path.join("/tmp", unique_name)
with open(temp_path, "wb") as f:
f.write(csv_bytes)
return df, temp_path
# ──────────────────────────────────────────────────────────────
# 6. Build the Gradio Interface
# ──────────────────────────────────────────────────────────────
def build_interface():
with gr.Blocks(title="Book Cover Scanner") as demo:
gr.Markdown(
"""
## Book Cover Scanner + Metadata Lookup
1. Upload a photo containing one or multiple book covers
2. The app will:
- Detect individual covers (rectangles).
- If any are found, OCR each one and query OpenLibrary for metadata.
- If **no** rectangles are detected, OCR the **entire image** once.
3. Display all detected/guessed books in a table.
4. Download a CSV of the results.
**Tips:**
- For best cover detection: use a flat, well-lit photo with minimal glare/obstructions.
- You can also place each cover on a plain background (e.g., a white tabletop).
"""
)
with gr.Row():
img_in = gr.Image(type="pil", label="Upload Image of Book Covers")
run_button = gr.Button("Scan & Lookup")
output_table = gr.Dataframe(
headers=["title", "author_name", "publisher", "first_publish_year"],
label="Detected Books + Metadata",
datatype="pandas",
)
download_file = gr.File(label="Download CSV")
def on_run(image):
df, filepath = process_image(image)
return df, filepath
run_button.click(
fn=on_run,
inputs=[img_in],
outputs=[output_table, download_file],
)
return demo
if __name__ == "__main__":
demo_app = build_interface()
demo_app.launch()