Spaces:
Runtime error
Runtime error
File size: 10,133 Bytes
430a6c7 bbc77e0 430a6c7 cece48d 430a6c7 cece48d 430a6c7 cece48d 430a6c7 cece48d d668e84 cece48d b97942e cece48d b97942e cece48d b97942e 4721608 b97942e cece48d b97942e cece48d b97942e d668e84 b97942e cece48d d668e84 cece48d b97942e 0475645 b97942e bbc77e0 d668e84 bbc77e0 b97942e cece48d b97942e cece48d b97942e cece48d b97942e cece48d b97942e cece48d 4721608 b97942e 4721608 b97942e bbc77e0 b97942e 4721608 b97942e 0475645 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import cv2
import numpy as np
import pytesseract
import requests
import pandas as pd
import gradio as gr
import uuid
import os
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 1. Utility: Detect rectangular contours (approximate book covers)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def detect_book_regions(image: np.ndarray, min_area=5000, eps_coef=0.02):
"""
Detect rectangular regions in an image that likely correspond to book covers.
Returns a list of bounding boxes: (x, y, w, h).
"""
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
edges = cv2.Canny(blurred, 50, 150)
# Dilate + erode to close gaps
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
closed = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel)
contours, _ = cv2.findContours(
closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
boxes = []
for cnt in contours:
area = cv2.contourArea(cnt)
if area < min_area:
continue
peri = cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, eps_coef * peri, True)
# Keep only quadrilaterals
if len(approx) == 4:
x, y, w, h = cv2.boundingRect(approx)
ar = w / float(h)
# Filter by typical book-cover aspect ratios
# (you can loosen/tighten these ranges if needed)
if 0.4 < ar < 0.9 or 1.0 < ar < 1.6:
boxes.append((x, y, w, h))
# Sort leftβright, then topβbottom
boxes = sorted(boxes, key=lambda b: (b[1], b[0]))
return boxes
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 2. OCR on a cropped region
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def ocr_on_region(image: np.ndarray, box: tuple):
"""
Crop the image to the given box and run Tesseract OCR.
Return the raw OCR text.
"""
x, y, w, h = box
cropped = image[y : y + h, x : x + w]
gray_crop = cv2.cvtColor(cropped, cv2.COLOR_BGR2GRAY)
_, thresh_crop = cv2.threshold(
gray_crop, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
)
custom_config = r"--oem 3 --psm 6"
text = pytesseract.image_to_string(thresh_crop, config=custom_config)
return text.strip()
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 3. OCR on the full image (fallback)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def ocr_full_image(image: np.ndarray):
"""
Run OCR on the entire image if no covers were detected.
Return the full OCR text (string).
"""
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Optionally threshold entire image as well
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
custom_config = r"--oem 3 --psm 6"
text = pytesseract.image_to_string(thresh, config=custom_config)
return text.strip()
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 4. Query OpenLibrary API
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def query_openlibrary(title_text: str, author_text: str = None):
"""
Search OpenLibrary by title (and optional author).
Return a dict with title, author_name, publisher, first_publish_year, or None.
"""
base_url = "https://openlibrary.org/search.json"
params = {"title": title_text}
if author_text:
params["author"] = author_text
try:
resp = requests.get(base_url, params=params, timeout=5)
resp.raise_for_status()
data = resp.json()
if data.get("docs"):
doc = data["docs"][0]
return {
"title": doc.get("title", ""),
"author_name": ", ".join(doc.get("author_name", [])),
"publisher": ", ".join(doc.get("publisher", [])),
"first_publish_year": doc.get("first_publish_year", ""),
}
except Exception as e:
print(f"OpenLibrary query failed: {e}")
return None
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 5. Process one uploaded image
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def process_image(image_file):
"""
Gradio passes a PIL image or numpy array. Convert to OpenCV BGR,
detect covers β OCR β OpenLibrary.
If no covers are found, fall back to OCR on the full image once.
Write CSV to a temp file and return (DataFrame, filepath).
"""
# Convert PIL to OpenCV BGR
img = np.array(image_file)[:, :, ::-1].copy()
# 1) Try to detect individual covers
boxes = detect_book_regions(img)
records = []
if boxes:
# If we found boxes, run OCR + lookup for each
for box in boxes:
ocr_text = ocr_on_region(img, box)
lines = [l.strip() for l in ocr_text.splitlines() if l.strip()]
if not lines:
continue
title_guess = lines[0]
author_guess = lines[1] if len(lines) > 1 else None
meta = query_openlibrary(title_guess, author_guess)
if meta:
records.append(meta)
else:
# No OpenLibrary match β still include OCR result
records.append(
{
"title": title_guess,
"author_name": author_guess or "",
"publisher": "",
"first_publish_year": "",
}
)
else:
# 2) FALLBACK: no boxes detected β OCR on full image once
full_text = ocr_full_image(img)
lines = [l.strip() for l in full_text.splitlines() if l.strip()]
if lines:
# Use first line as title guess, second (if any) as author guess
title_guess = lines[0]
author_guess = lines[1] if len(lines) > 1 else None
meta = query_openlibrary(title_guess, author_guess)
if meta:
records.append(meta)
else:
records.append(
{
"title": title_guess,
"author_name": author_guess or "",
"publisher": "",
"first_publish_year": "",
}
)
# If lines is empty, records remains empty
# Build DataFrame (even if empty)
df = pd.DataFrame(records, columns=["title", "author_name", "publisher", "first_publish_year"])
csv_bytes = df.to_csv(index=False).encode()
# Write CSV to a unique temporary file
unique_name = f"books_{uuid.uuid4().hex}.csv"
temp_path = os.path.join("/tmp", unique_name)
with open(temp_path, "wb") as f:
f.write(csv_bytes)
return df, temp_path
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 6. Build the Gradio Interface
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def build_interface():
with gr.Blocks(title="Book Cover Scanner") as demo:
gr.Markdown(
"""
## Book Cover Scanner + Metadata Lookup
1. Upload a photo containing one or multiple book covers
2. The app will:
- Detect individual covers (rectangles).
- If any are found, OCR each one and query OpenLibrary for metadata.
- If **no** rectangles are detected, OCR the **entire image** once.
3. Display all detected/guessed books in a table.
4. Download a CSV of the results.
**Tips:**
- For best cover detection: use a flat, well-lit photo with minimal glare/obstructions.
- You can also place each cover on a plain background (e.g., a white tabletop).
"""
)
with gr.Row():
img_in = gr.Image(type="pil", label="Upload Image of Book Covers")
run_button = gr.Button("Scan & Lookup")
output_table = gr.Dataframe(
headers=["title", "author_name", "publisher", "first_publish_year"],
label="Detected Books + Metadata",
datatype="pandas",
)
download_file = gr.File(label="Download CSV")
def on_run(image):
df, filepath = process_image(image)
return df, filepath
run_button.click(
fn=on_run,
inputs=[img_in],
outputs=[output_table, download_file],
)
return demo
if __name__ == "__main__":
demo_app = build_interface()
demo_app.launch()
|