File size: 1,414 Bytes
79616b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from fastapi import FastAPI, File, UploadFile
import librosa
import numpy as np
import shutil
from funasr import AutoModel

app = FastAPI()

# Load mô hình SenseVoiceSmall
model_dir = "FunAudioLLM/SenseVoiceSmall"
model = AutoModel(model=model_dir, vad_model="fsmn-vad", vad_kwargs={"max_single_segment_time": 30000}, device="cpu", hub="hf")

# Hàm tính RMS energy
def calculate_rms_energy(audio_path):
    y, sr = librosa.load(audio_path)
    rms = librosa.feature.rms(y=y)[0]
    return np.mean(rms)

# Hàm phát hiện tiếng ồn
def detect_noise(audio_path):
    rms_energy = calculate_rms_energy(audio_path)
    res = model.generate(input=audio_path, language="auto", audio_event_detection=True)
    audio_events = res[0].get("audio_event_detection", {})

    if rms_energy > 0.02:
        return "ồn ào"
    elif rms_energy > 0.01:
        for event_label, event_score in audio_events.items():
            if event_score > 0.7 and event_label in ["laughter", "applause", "crying", "coughing"]:
                return f"ồn ào ({event_label})"
    return "yên tĩnh"

# API nhận file âm thanh từ Flutter
@app.post("/detect-noise/")
async def detect_noise_api(file: UploadFile = File(...)):
    file_path = f"temp/{file.filename}"
    with open(file_path, "wb") as buffer:
        shutil.copyfileobj(file.file, buffer)

    result = detect_noise(file_path)
    return {"noise_level": result}