Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile
|
2 |
+
import librosa
|
3 |
+
import numpy as np
|
4 |
+
import shutil
|
5 |
+
from funasr import AutoModel
|
6 |
+
|
7 |
+
app = FastAPI()
|
8 |
+
|
9 |
+
# Load mô hình SenseVoiceSmall
|
10 |
+
model_dir = "FunAudioLLM/SenseVoiceSmall"
|
11 |
+
model = AutoModel(model=model_dir, vad_model="fsmn-vad", vad_kwargs={"max_single_segment_time": 30000}, device="cpu", hub="hf")
|
12 |
+
|
13 |
+
# Hàm tính RMS energy
|
14 |
+
def calculate_rms_energy(audio_path):
|
15 |
+
y, sr = librosa.load(audio_path)
|
16 |
+
rms = librosa.feature.rms(y=y)[0]
|
17 |
+
return np.mean(rms)
|
18 |
+
|
19 |
+
# Hàm phát hiện tiếng ồn
|
20 |
+
def detect_noise(audio_path):
|
21 |
+
rms_energy = calculate_rms_energy(audio_path)
|
22 |
+
res = model.generate(input=audio_path, language="auto", audio_event_detection=True)
|
23 |
+
audio_events = res[0].get("audio_event_detection", {})
|
24 |
+
|
25 |
+
if rms_energy > 0.02:
|
26 |
+
return "ồn ào"
|
27 |
+
elif rms_energy > 0.01:
|
28 |
+
for event_label, event_score in audio_events.items():
|
29 |
+
if event_score > 0.7 and event_label in ["laughter", "applause", "crying", "coughing"]:
|
30 |
+
return f"ồn ào ({event_label})"
|
31 |
+
return "yên tĩnh"
|
32 |
+
|
33 |
+
# API nhận file âm thanh từ Flutter
|
34 |
+
@app.post("/detect-noise/")
|
35 |
+
async def detect_noise_api(file: UploadFile = File(...)):
|
36 |
+
file_path = f"temp/{file.filename}"
|
37 |
+
with open(file_path, "wb") as buffer:
|
38 |
+
shutil.copyfileobj(file.file, buffer)
|
39 |
+
|
40 |
+
result = detect_noise(file_path)
|
41 |
+
return {"noise_level": result}
|