Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,23 @@
|
|
1 |
-
from transformers import
|
2 |
-
import gradio as gr
|
3 |
-
import torch
|
4 |
|
5 |
-
# Load the
|
6 |
-
|
7 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
|
10 |
# Function to generate a response
|
11 |
def dialoGPT_response(user_input, history):
|
12 |
-
#
|
13 |
-
if history:
|
14 |
-
history_tensor = torch.LongTensor(history)
|
15 |
-
else:
|
16 |
-
history_tensor = torch.LongTensor([])
|
17 |
-
|
18 |
-
# Encode the new user input, with the history
|
19 |
-
new_user_input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')
|
20 |
-
|
21 |
-
# Append the new user input tokens to the chat history
|
22 |
-
bot_input_ids = torch.cat([history_tensor, new_user_input_ids], dim=-1)
|
23 |
-
|
24 |
-
# Generate a response
|
25 |
-
chat_history_ids = model.generate(
|
26 |
-
bot_input_ids,
|
27 |
-
max_length=1000, # You might want to adjust this based on your needs
|
28 |
-
pad_token_id=tokenizer.eos_token_id,
|
29 |
-
no_repeat_ngram_size=3 # This prevents repeating phrases
|
30 |
-
)
|
31 |
-
|
32 |
-
# Decode the response, keeping only the new tokens
|
33 |
-
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
|
34 |
|
35 |
-
#
|
36 |
-
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# Gradio interface
|
41 |
iface = gr.Interface(
|
@@ -50,7 +32,7 @@ iface = gr.Interface(
|
|
50 |
],
|
51 |
title="DialoGPT Chat",
|
52 |
description="Chat with DialoGPT-small model. Your conversation history is maintained.",
|
53 |
-
allow_flagging="never"
|
54 |
)
|
55 |
|
56 |
iface.launch()
|
|
|
1 |
+
from transformers import pipeline
|
|
|
|
|
2 |
|
3 |
+
# Load the pipeline for text generation
|
4 |
+
generator = pipeline("text-generation", model="microsoft/DialoGPT-small")
|
|
|
|
|
5 |
|
6 |
# Function to generate a response
|
7 |
def dialoGPT_response(user_input, history):
|
8 |
+
# Since the pipeline handles everything, we just need to format our input
|
9 |
+
conversation = [{"role": "user", "content": user_input}] if history is None else history + [{"role": "user", "content": user_input}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Generate response using the pipeline, which manages all pre/post-processing
|
12 |
+
response = generator(conversation, return_full_text=False, max_length=1000)
|
13 |
|
14 |
+
# Extract the last assistant response
|
15 |
+
assistant_response = response[0]['generated_text']
|
16 |
+
|
17 |
+
# Append this response to history
|
18 |
+
new_history = conversation + [{"role": "assistant", "content": assistant_response}]
|
19 |
+
|
20 |
+
return assistant_response, new_history
|
21 |
|
22 |
# Gradio interface
|
23 |
iface = gr.Interface(
|
|
|
32 |
],
|
33 |
title="DialoGPT Chat",
|
34 |
description="Chat with DialoGPT-small model. Your conversation history is maintained.",
|
35 |
+
allow_flagging="never"
|
36 |
)
|
37 |
|
38 |
iface.launch()
|