Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
import gradio as gr
|
|
|
3 |
|
4 |
# Load the model and tokenizer
|
5 |
model_name = "microsoft/DialoGPT-small"
|
@@ -8,30 +9,48 @@ model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
8 |
|
9 |
# Function to generate a response
|
10 |
def dialoGPT_response(user_input, history):
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Encode the new user input, with the history
|
12 |
new_user_input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')
|
13 |
|
14 |
# Append the new user input tokens to the chat history
|
15 |
-
bot_input_ids = torch.cat([
|
16 |
|
17 |
# Generate a response
|
18 |
chat_history_ids = model.generate(
|
19 |
bot_input_ids,
|
20 |
-
max_length=1000,
|
21 |
-
pad_token_id=tokenizer.eos_token_id
|
|
|
22 |
)
|
23 |
|
24 |
-
# Decode the response
|
25 |
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
|
28 |
# Gradio interface
|
29 |
iface = gr.Interface(
|
30 |
fn=dialoGPT_response,
|
31 |
-
inputs=[
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
title="DialoGPT Chat",
|
34 |
-
description="Chat with DialoGPT-small model."
|
|
|
35 |
)
|
36 |
|
37 |
iface.launch()
|
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
import gradio as gr
|
3 |
+
import torch
|
4 |
|
5 |
# Load the model and tokenizer
|
6 |
model_name = "microsoft/DialoGPT-small"
|
|
|
9 |
|
10 |
# Function to generate a response
|
11 |
def dialoGPT_response(user_input, history):
|
12 |
+
# Convert history to tensor if it's not None
|
13 |
+
if history:
|
14 |
+
history_tensor = torch.LongTensor(history)
|
15 |
+
else:
|
16 |
+
history_tensor = torch.LongTensor([])
|
17 |
+
|
18 |
# Encode the new user input, with the history
|
19 |
new_user_input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')
|
20 |
|
21 |
# Append the new user input tokens to the chat history
|
22 |
+
bot_input_ids = torch.cat([history_tensor, new_user_input_ids], dim=-1)
|
23 |
|
24 |
# Generate a response
|
25 |
chat_history_ids = model.generate(
|
26 |
bot_input_ids,
|
27 |
+
max_length=1000, # You might want to adjust this based on your needs
|
28 |
+
pad_token_id=tokenizer.eos_token_id,
|
29 |
+
no_repeat_ngram_size=3 # This prevents repeating phrases
|
30 |
)
|
31 |
|
32 |
+
# Decode the response, keeping only the new tokens
|
33 |
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
|
34 |
+
|
35 |
+
# Update history with new input and response
|
36 |
+
new_history = chat_history_ids.tolist()[0] # Convert tensor to list for Gradio state
|
37 |
+
|
38 |
+
return response, new_history
|
39 |
|
40 |
# Gradio interface
|
41 |
iface = gr.Interface(
|
42 |
fn=dialoGPT_response,
|
43 |
+
inputs=[
|
44 |
+
gr.Textbox(placeholder="Enter your message..."),
|
45 |
+
"state"
|
46 |
+
],
|
47 |
+
outputs=[
|
48 |
+
"text", # The response
|
49 |
+
"state" # Updated history
|
50 |
+
],
|
51 |
title="DialoGPT Chat",
|
52 |
+
description="Chat with DialoGPT-small model. Your conversation history is maintained.",
|
53 |
+
allow_flagging="never" # Disabling flagging since this is a chat model
|
54 |
)
|
55 |
|
56 |
iface.launch()
|