File size: 6,817 Bytes
93b0124
5964b4e
 
 
93b0124
5964b4e
93b0124
 
 
5964b4e
93b0124
 
 
 
 
 
 
c470d37
 
93b0124
c470d37
93b0124
c470d37
 
 
 
 
 
 
 
93b0124
 
 
 
5964b4e
c470d37
 
93b0124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c470d37
93b0124
c470d37
 
 
93b0124
 
5964b4e
93b0124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5964b4e
c470d37
 
 
5964b4e
 
c470d37
5964b4e
 
 
93b0124
5964b4e
 
93b0124
 
5964b4e
 
 
 
 
 
 
 
f8b5cf4
5964b4e
f45b71b
5964b4e
f8b5cf4
 
 
 
 
 
f45b71b
 
 
f8b5cf4
 
f45b71b
f8b5cf4
 
 
 
5964b4e
 
 
 
 
 
 
 
 
 
 
 
 
c470d37
93b0124
 
5964b4e
 
 
 
93b0124
5964b4e
 
 
 
 
 
 
 
 
c470d37
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
import faiss
import numpy as np
from sentence_transformers import SentenceTransformer
from huggingface_hub import HfApi, hf_hub_download, login, whoami

# πŸ”Ή Hugging Face Repository Details
HF_REPO_ID = "tstone87/repo"  # Your repo
HF_TOKEN = os.getenv("HF_TOKEN")  # Retrieve token securely from environment variable

if not HF_TOKEN:
    raise ValueError("❌ ERROR: Hugging Face token not found. Add it as a secret in the Hugging Face Space settings.")

# πŸ”Ή Authenticate with Hugging Face
login(token=HF_TOKEN)

# πŸ”Ή File Paths
EMBEDDINGS_FILE = "policy_embeddings.npy"
INDEX_FILE = "faiss_index.bin"
TEXT_FILE = "combined_text_documents.txt"

# πŸ”Ή Load policy text from file
if os.path.exists(TEXT_FILE):
    with open(TEXT_FILE, "r", encoding="utf-8") as f:
        POLICY_TEXT = f.read()
    print("βœ… Loaded policy text from combined_text_documents.txt")
else:
    print("❌ ERROR: combined_text_documents.txt not found! Ensure it's uploaded.")
    POLICY_TEXT = ""

# πŸ”Ή Sentence Embedding Model (Optimized for Speed)
model = SentenceTransformer("all-MiniLM-L6-v2")

# πŸ”Ή Split policy text into chunks for FAISS indexing
chunk_size = 500
chunks = [POLICY_TEXT[i:i+chunk_size] for i in range(0, len(POLICY_TEXT), chunk_size)] if POLICY_TEXT else []

# πŸ”Ή Function to Upload FAISS Files to Hugging Face Hub
def upload_faiss_to_hf():
    api = HfApi()

    if os.path.exists(EMBEDDINGS_FILE):
        print("πŸ“€ Uploading FAISS embeddings to Hugging Face...")
        api.upload_file(
            path_or_fileobj=EMBEDDINGS_FILE,
            path_in_repo=EMBEDDINGS_FILE,
            repo_id=HF_REPO_ID,
            repo_type="dataset",
            token=HF_TOKEN,
        )

    if os.path.exists(INDEX_FILE):
        print("πŸ“€ Uploading FAISS index to Hugging Face...")
        api.upload_file(
            path_or_fileobj=INDEX_FILE,
            path_in_repo=INDEX_FILE,
            repo_id=HF_REPO_ID,
            repo_type="dataset",
            token=HF_TOKEN,
        )

    print("βœ… FAISS files successfully uploaded to Hugging Face.")

# πŸ”Ή Function to Download FAISS Files from Hugging Face Hub if Missing
def download_faiss_from_hf():
    if not os.path.exists(EMBEDDINGS_FILE):
        print("πŸ“₯ Downloading FAISS embeddings from Hugging Face...")
        hf_hub_download(repo_id=HF_REPO_ID, filename=EMBEDDINGS_FILE, local_dir=".", token=HF_TOKEN)

    if not os.path.exists(INDEX_FILE):
        print("πŸ“₯ Downloading FAISS index from Hugging Face...")
        hf_hub_download(repo_id=HF_REPO_ID, filename=INDEX_FILE, local_dir=".", token=HF_TOKEN)

    print("βœ… FAISS files downloaded from Hugging Face.")

# πŸ”Ή Check if FAISS Files Exist, Otherwise Download
if os.path.exists(EMBEDDINGS_FILE) and os.path.exists(INDEX_FILE):
    print("βœ… FAISS files found locally. Loading from disk...")
    embeddings = np.load(EMBEDDINGS_FILE)
    index = faiss.read_index(INDEX_FILE)
else:
    print("πŸš€ FAISS files not found! Downloading from Hugging Face...")
    download_faiss_from_hf()

    if os.path.exists(EMBEDDINGS_FILE) and os.path.exists(INDEX_FILE):
        embeddings = np.load(EMBEDDINGS_FILE)
        index = faiss.read_index(INDEX_FILE)
    else:
        print("πŸš€ No FAISS files found. Recomputing...")
        if chunks:
            embeddings = np.array([model.encode(chunk) for chunk in chunks])

            # Save embeddings for future use
            np.save(EMBEDDINGS_FILE, embeddings)

            # Use FAISS optimized index for faster lookup
            d = embeddings.shape[1]
            nlist = 10  # Number of clusters
            index = faiss.IndexIVFFlat(faiss.IndexFlatL2(d), d, nlist)
            index.train(embeddings)
            index.add(embeddings)
            index.nprobe = 2  # Speed optimization

            # Save FAISS index
            faiss.write_index(index, INDEX_FILE)
            upload_faiss_to_hf()  # Upload FAISS files to Hugging Face
            print("βœ… FAISS index created and saved.")
        else:
            print("❌ ERROR: No text to index. Check combined_text_documents.txt.")
            index = None

# πŸ”Ή Function to Search FAISS
def search_policy(query, top_k=3):
    if index is None:
        return "Error: FAISS index is not available."

    query_embedding = model.encode(query).reshape(1, -1)
    distances, indices = index.search(query_embedding, top_k)

    return "\n\n".join([chunks[i] for i in indices[0] if i < len(chunks)])

# πŸ”Ή Hugging Face LLM Client
from huggingface_hub import InferenceClient
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

# πŸ”Ή Function to Handle Chat Responses
def respond(message, history, system_message, max_tokens, temperature, top_p):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    # πŸ”Ή Retrieve relevant policy info from FAISS
    policy_context = search_policy(message)

    if policy_context:
        # πŸ”Ή Display retrieved context in chat
        messages.append({"role": "assistant", "content": f"πŸ“„ **Relevant Policy Context:**\n\n{policy_context}"})

        # πŸ”Ή Force the LLM to use the retrieved policy text
        user_query_with_context = f"""
        The following is the most relevant policy information retrieved from the official Colorado public assistance policies:

        {policy_context}

        Based on this information, answer the following question:
        {message}
        """
        messages.append({"role": "user", "content": user_query_with_context})
    else:
        # If no relevant policy info is found, use the original message
        messages.append({"role": "user", "content": message})

    response = ""
    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content
        response += token
        yield response

# πŸ”Ή Gradio Chat Interface
import gradio as gr

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(
            value="You are a knowledgeable and professional chatbot designed to assist Colorado case workers in determining eligibility for public assistance programs.",
            label="System message"
        ),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
    ],
)

if __name__ == "__main__":
    demo.launch()