Spaces:
Build error
Build error
from PIL import Image | |
import torch | |
import torchvision.transforms as transforms | |
from torchvision import models | |
import gradio as gr | |
# 🔧 Set device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# 📦 Load your fine-tuned model | |
model = models.resnet50(pretrained=False) | |
model.fc = torch.nn.Linear(model.fc.in_features, 2) # 2 classes: Edible, Poisonous | |
model.load_state_dict(torch.load("resnet_mushroom_classifier.pth", map_location=device)) | |
model = model.to(device) | |
model.eval() | |
# 🏷️ Class names | |
class_names = ['Edible', 'Poisonous'] | |
# 🍄 Mapping for more detailed species | |
mushroom_species = { | |
"Edible": "Possible species:\n• Amanita citrina\n• Russula delica\n• Phaeogyroporus portentosus", | |
"Poisonous": "Possible species:\n• Amanita phalloides\n• Inocybe rimosa" | |
} | |
# 🎨 Image preprocessing (must match training) | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], | |
[0.229, 0.224, 0.225]) | |
]) | |
# 🧠 Prediction function | |
def classify_mushroom(image: Image.Image): | |
try: | |
image = image.convert("RGB") | |
tensor = transform(image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
outputs = model(tensor) | |
_, predicted = torch.max(outputs, 1) | |
label = class_names[predicted.item()] | |
score = torch.softmax(outputs, dim=1)[0][predicted.item()].item() * 100 | |
suggestion = mushroom_species[label] | |
return label, "กินได้" if label == "Edible" else "พิษ", f"{score:.2f}%", suggestion | |
except Exception as e: | |
print(f"❌ Error: {e}") | |
return "Error", "ผิดพลาด", "N/A", "N/A" | |
# 🎛️ Gradio UI | |
if __name__ == "__main__": | |
with gr.Blocks() as demo: | |
gr.Markdown("## 🍄 Mushroom Safety Classifier") | |
gr.Markdown("Upload a mushroom photo to check if it’s edible or poisonous.\nอัปโหลดรูปเห็ดเพื่อทำนายว่าเห็ดกินได้หรือมีพิษ") | |
with gr.Row(): | |
image_input = gr.Image(type="pil", label="📷 Upload Mushroom Image") | |
with gr.Column(): | |
label_en = gr.Textbox(label="🧠 Prediction (English)") | |
label_th = gr.Textbox(label="🗣️ คำทำนาย (ภาษาไทย)") | |
confidence = gr.Textbox(label="📶 Confidence Score") | |
label_hint = gr.Textbox(label="🏷️ Likely Species (Based on Training Data)") | |
classify_btn = gr.Button("🔍 Classify") | |
classify_btn.click( | |
fn=classify_mushroom, | |
inputs=image_input, | |
outputs=[label_en, label_th, confidence, label_hint] | |
) | |
demo.launch() | |