Spaces:
Build error
Build error
Create app.py
Browse filesthis version if apply fine-tune mushroom classification
Loads your fine-tuned PyTorch ResNet model.
Uses only two main classes: "Edible" and "Poisonous".
When the model predicts a class, it shows extra information suggesting possible mushroom species from your dataset:
Edible → "Amanita citrina", "Russula delica", "Phaeogyroporus portentosus"
Poisonous → "Amanita phalloides", "Inocybe rimosa"
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import torch
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
from torchvision import models
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
# 🔧 Set device
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
|
10 |
+
# 📦 Load your fine-tuned model
|
11 |
+
model = models.resnet50(pretrained=False)
|
12 |
+
model.fc = torch.nn.Linear(model.fc.in_features, 2) # 2 classes: Edible, Poisonous
|
13 |
+
model.load_state_dict(torch.load("resnet_mushroom_classifier.pth", map_location=device))
|
14 |
+
model = model.to(device)
|
15 |
+
model.eval()
|
16 |
+
|
17 |
+
# 🏷️ Class names
|
18 |
+
class_names = ['Edible', 'Poisonous']
|
19 |
+
|
20 |
+
# 🍄 Mapping for more detailed species
|
21 |
+
mushroom_species = {
|
22 |
+
"Edible": "Possible species:\n• Amanita citrina\n• Russula delica\n• Phaeogyroporus portentosus",
|
23 |
+
"Poisonous": "Possible species:\n• Amanita phalloides\n• Inocybe rimosa"
|
24 |
+
}
|
25 |
+
|
26 |
+
# 🎨 Image preprocessing (must match training)
|
27 |
+
transform = transforms.Compose([
|
28 |
+
transforms.Resize((224, 224)),
|
29 |
+
transforms.ToTensor(),
|
30 |
+
transforms.Normalize([0.485, 0.456, 0.406],
|
31 |
+
[0.229, 0.224, 0.225])
|
32 |
+
])
|
33 |
+
|
34 |
+
# 🧠 Prediction function
|
35 |
+
def classify_mushroom(image: Image.Image):
|
36 |
+
try:
|
37 |
+
image = image.convert("RGB")
|
38 |
+
tensor = transform(image).unsqueeze(0).to(device)
|
39 |
+
|
40 |
+
with torch.no_grad():
|
41 |
+
outputs = model(tensor)
|
42 |
+
_, predicted = torch.max(outputs, 1)
|
43 |
+
label = class_names[predicted.item()]
|
44 |
+
score = torch.softmax(outputs, dim=1)[0][predicted.item()].item() * 100
|
45 |
+
|
46 |
+
suggestion = mushroom_species[label]
|
47 |
+
|
48 |
+
return label, "กินได้" if label == "Edible" else "พิษ", f"{score:.2f}%", suggestion
|
49 |
+
|
50 |
+
except Exception as e:
|
51 |
+
print(f"❌ Error: {e}")
|
52 |
+
return "Error", "ผิดพลาด", "N/A", "N/A"
|
53 |
+
|
54 |
+
# 🎛️ Gradio UI
|
55 |
+
if __name__ == "__main__":
|
56 |
+
with gr.Blocks() as demo:
|
57 |
+
gr.Markdown("## 🍄 Mushroom Safety Classifier")
|
58 |
+
gr.Markdown("Upload a mushroom photo to check if it’s edible or poisonous.\nอัปโหลดรูปเห็ดเพื่อทำนายว่าเห็ดกินได้หรือมีพิษ")
|
59 |
+
|
60 |
+
with gr.Row():
|
61 |
+
image_input = gr.Image(type="pil", label="📷 Upload Mushroom Image")
|
62 |
+
with gr.Column():
|
63 |
+
label_en = gr.Textbox(label="🧠 Prediction (English)")
|
64 |
+
label_th = gr.Textbox(label="🗣️ คำทำนาย (ภาษาไทย)")
|
65 |
+
confidence = gr.Textbox(label="📶 Confidence Score")
|
66 |
+
label_hint = gr.Textbox(label="🏷️ Likely Species (Based on Training Data)")
|
67 |
+
|
68 |
+
classify_btn = gr.Button("🔍 Classify")
|
69 |
+
|
70 |
+
classify_btn.click(
|
71 |
+
fn=classify_mushroom,
|
72 |
+
inputs=image_input,
|
73 |
+
outputs=[label_en, label_th, confidence, label_hint]
|
74 |
+
)
|
75 |
+
|
76 |
+
demo.launch()
|