Spaces:
Sleeping
Sleeping
File size: 3,323 Bytes
9a7ccba 9beb9e3 9a7ccba 55e40d9 9a7ccba 55e40d9 dc15a5c 55e40d9 21adb3e 55e40d9 9beb9e3 0c0ed04 beeaade 9beb9e3 beeaade 0c0ed04 9beb9e3 55e40d9 9a7ccba 55e40d9 21adb3e 9a7ccba 55e40d9 9beb9e3 55e40d9 9beb9e3 55e40d9 21adb3e dc15a5c 21adb3e 55e40d9 dc15a5c 55e40d9 21adb3e 55e40d9 8fae716 beeaade |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import gradio as gr
from transformers import pipeline
import PyPDF2
import markdown
# Preload models
models = {
"distilbert-base-uncased-distilled-squad": "distilbert-base-uncased-distilled-squad",
"roberta-base-squad2": "deepset/roberta-base-squad2",
"bert-large-uncased-whole-word-masking-finetuned-squad": "bert-large-uncased-whole-word-masking-finetuned-squad",
"albert-base-v2": "twmkn9/albert-base-v2-squad2",
"xlm-roberta-large-squad2": "deepset/xlm-roberta-large-squad2"
}
loaded_models = {}
def load_model(model_name):
if model_name not in loaded_models:
loaded_models[model_name] = pipeline("question-answering", model=models[model_name])
return loaded_models[model_name]
def answer_question(model_name, file, question, status):
status = "Loading model..."
model = load_model(model_name)
if file is not None:
file_name = file.name
if file_name.endswith(".pdf"):
pdf_reader = PyPDF2.PdfReader(file)
context = ""
for page_num in range(len(pdf_reader.pages)):
context += pdf_reader.pages[page_num].extract_text()
elif file_name.endswith(".md"):
context = file.read().decode('utf-8')
context = markdown.markdown(context)
else:
context = file.read().decode('utf-8')
else:
context = ""
result = model(question=question, context=context)
answer = result['answer']
score = result['score']
# Explain score
score_explanation = f"The confidence score ranges from 0 to 1, where a higher score indicates higher confidence in the answer's correctness. In this case, the score is {score:.2f}. A score closer to 1 implies the model is very confident about the answer."
status = "Model loaded"
return answer, f"{score:.2f}", score_explanation, status
# Define the Gradio interface
with gr.Blocks() as interface:
gr.Markdown(
"""
# Question Answering System
Upload a document (text, PDF, or Markdown) and ask questions to get answers based on the context.
**Supported File Types**: `.txt`, `.pdf`, `.md`
""")
with gr.Row():
model_dropdown = gr.Dropdown(
choices=list(models.keys()),
label="Select Model",
value="distilbert-base-uncased-distilled-squad"
)
with gr.Row():
file_input = gr.File(label="Upload Document", file_types=["text", "pdf", "markdown"])
question_input = gr.Textbox(lines=2, placeholder="Enter your question here...", label="Question")
with gr.Row():
answer_output = gr.Textbox(label="Answer")
score_output = gr.Textbox(label="Confidence Score")
explanation_output = gr.Textbox(label="Score Explanation")
with gr.Row():
submit_button = gr.Button("Submit")
status_output = gr.Markdown(value="")
def on_submit(model_name, file, question):
return answer_question(model_name, file, question, status="Loading model...")
submit_button.click(
on_submit,
inputs=[model_dropdown, file_input, question_input],
outputs=[answer_output, score_output, explanation_output, status_output]
)
if __name__ == "__main__":
interface.launch(share=True)
|