Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,78 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
|
|
3 |
|
4 |
-
#
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
answer = result['answer']
|
10 |
score = result['score']
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Define the Gradio interface
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
gr.
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
if __name__ == "__main__":
|
29 |
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
+
from transformers.pipelines import PipelineException
|
4 |
|
5 |
+
# Preload models
|
6 |
+
models = {
|
7 |
+
"distilbert-base-uncased-distilled-squad": "distilbert-base-uncased-distilled-squad",
|
8 |
+
"roberta-base-squad2": "deepset/roberta-base-squad2",
|
9 |
+
"bert-large-uncased-whole-word-masking-finetuned-squad": "bert-large-uncased-whole-word-masking-finetuned-squad",
|
10 |
+
"albert-base-v2": "twmkn9/albert-base-v2-squad2",
|
11 |
+
"xlm-roberta-large-squad2": "deepset/xlm-roberta-large-squad2"
|
12 |
+
}
|
13 |
|
14 |
+
loaded_models = {}
|
15 |
+
|
16 |
+
def load_model(model_name):
|
17 |
+
if model_name not in loaded_models:
|
18 |
+
try:
|
19 |
+
loaded_models[model_name] = pipeline("question-answering", model=models[model_name])
|
20 |
+
except PipelineException as e:
|
21 |
+
return str(e)
|
22 |
+
return loaded_models[model_name]
|
23 |
+
|
24 |
+
def answer_question(model_name, file, question):
|
25 |
+
model = load_model(model_name)
|
26 |
+
if isinstance(model, str):
|
27 |
+
return model, "", ""
|
28 |
+
|
29 |
+
context = file.read() if file else ""
|
30 |
+
result = model(question=question, context=context)
|
31 |
answer = result['answer']
|
32 |
score = result['score']
|
33 |
+
|
34 |
+
# Explain score
|
35 |
+
score_explanation = f"The confidence score ranges from 0 to 1, where a higher score indicates higher confidence in the answer's correctness. In this case, the score is {score:.2f}. A score closer to 1 implies the model is very confident about the answer."
|
36 |
+
|
37 |
+
return answer, f"{score:.2f}", score_explanation
|
38 |
|
39 |
# Define the Gradio interface
|
40 |
+
with gr.Blocks() as interface:
|
41 |
+
gr.Markdown(
|
42 |
+
"""
|
43 |
+
# Question Answering System
|
44 |
+
Upload a document and ask questions to get answers based on the context.
|
45 |
+
""")
|
46 |
+
|
47 |
+
with gr.Row():
|
48 |
+
model_dropdown = gr.Dropdown(
|
49 |
+
choices=list(models.keys()),
|
50 |
+
label="Select Model",
|
51 |
+
value="distilbert-base-uncased-distilled-squad"
|
52 |
+
)
|
53 |
+
|
54 |
+
with gr.Row():
|
55 |
+
file_input = gr.File(label="Upload Document")
|
56 |
+
question_input = gr.Textbox(lines=2, placeholder="Enter your question here...", label="Question")
|
57 |
+
|
58 |
+
with gr.Row():
|
59 |
+
answer_output = gr.Textbox(label="Answer")
|
60 |
+
score_output = gr.Textbox(label="Confidence Score")
|
61 |
+
explanation_output = gr.Textbox(label="Score Explanation")
|
62 |
+
|
63 |
+
with gr.Row():
|
64 |
+
submit_button = gr.Button("Submit")
|
65 |
+
|
66 |
+
gr.Markdown("### Progress")
|
67 |
+
with gr.Row():
|
68 |
+
progress_bar = gr.Progress(label="Loading Model...")
|
69 |
+
|
70 |
+
submit_button.click(
|
71 |
+
answer_question,
|
72 |
+
inputs=[model_dropdown, file_input, question_input],
|
73 |
+
outputs=[answer_output, score_output, explanation_output],
|
74 |
+
show_progress=progress_bar,
|
75 |
+
)
|
76 |
|
77 |
if __name__ == "__main__":
|
78 |
interface.launch()
|