Spaces:
Running
on
Zero
Running
on
Zero
This PR improves the field labels
#1
by
Fabrice-TIERCELIN
- opened
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
-
from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline,
|
| 5 |
from PIL import Image
|
| 6 |
import os
|
| 7 |
import time
|
|
@@ -95,14 +95,14 @@ class Img2Img:
|
|
| 95 |
with gr.Blocks(css=css) as demo:
|
| 96 |
with gr.Row():
|
| 97 |
with gr.Column():
|
| 98 |
-
self.input_image_path = gr.Image(label="
|
| 99 |
-
self.prompt = gr.Textbox(label="
|
| 100 |
-
self.negative_prompt = gr.Textbox(label="
|
| 101 |
-
prompt_analysis_button = gr.Button("
|
| 102 |
-
self.controlnet_scale = gr.Slider(minimum=0.5, maximum=1.25, value=1.0, step=0.01, label="
|
| 103 |
-
generate_button = gr.Button("
|
| 104 |
with gr.Column():
|
| 105 |
-
self.output_image = gr.Image(type="pil", label="
|
| 106 |
|
| 107 |
prompt_analysis_button.click(
|
| 108 |
self.process_prompt_analysis,
|
|
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, AutoencoderKL
|
| 5 |
from PIL import Image
|
| 6 |
import os
|
| 7 |
import time
|
|
|
|
| 95 |
with gr.Blocks(css=css) as demo:
|
| 96 |
with gr.Row():
|
| 97 |
with gr.Column():
|
| 98 |
+
self.input_image_path = gr.Image(label="Input image", type='filepath')
|
| 99 |
+
self.prompt = gr.Textbox(label="Prompt", lines=3)
|
| 100 |
+
self.negative_prompt = gr.Textbox(label="Negative prompt", lines=3, value="sketch, lowres, error, extra digit, fewer digits, cropped, worst quality,low quality, normal quality, jpeg artifacts, blurry")
|
| 101 |
+
prompt_analysis_button = gr.Button("Prompt analysis")
|
| 102 |
+
self.controlnet_scale = gr.Slider(minimum=0.5, maximum=1.25, value=1.0, step=0.01, label="Lineart fidelity")
|
| 103 |
+
generate_button = gr.Button(value="Generate", variant="primary")
|
| 104 |
with gr.Column():
|
| 105 |
+
self.output_image = gr.Image(type="pil", label="Output image")
|
| 106 |
|
| 107 |
prompt_analysis_button.click(
|
| 108 |
self.process_prompt_analysis,
|