tori29umai commited on
Commit
6821262
·
verified ·
1 Parent(s): 92b4d2f

Upload 13 files

Browse files
diffusers_helper/bucket_tools.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ bucket_options = {
2
+ 640: [
3
+ (416, 960),
4
+ (448, 864),
5
+ (480, 832),
6
+ (512, 768),
7
+ (544, 704),
8
+ (576, 672),
9
+ (608, 640),
10
+ (640, 608),
11
+ (672, 576),
12
+ (704, 544),
13
+ (768, 512),
14
+ (832, 480),
15
+ (864, 448),
16
+ (960, 416),
17
+ ],
18
+ }
19
+
20
+
21
+ def find_nearest_bucket(h, w, resolution=640):
22
+ min_metric = float('inf')
23
+ best_bucket = None
24
+ for (bucket_h, bucket_w) in bucket_options[resolution]:
25
+ metric = abs(h * bucket_w - w * bucket_h)
26
+ if metric <= min_metric:
27
+ min_metric = metric
28
+ best_bucket = (bucket_h, bucket_w)
29
+ return best_bucket
30
+
diffusers_helper/clip_vision.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ def hf_clip_vision_encode(image, feature_extractor, image_encoder):
5
+ assert isinstance(image, np.ndarray)
6
+ assert image.ndim == 3 and image.shape[2] == 3
7
+ assert image.dtype == np.uint8
8
+
9
+ preprocessed = feature_extractor.preprocess(images=image, return_tensors="pt").to(device=image_encoder.device, dtype=image_encoder.dtype)
10
+ image_encoder_output = image_encoder(**preprocessed)
11
+
12
+ return image_encoder_output
diffusers_helper/dit_common.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import accelerate.accelerator
3
+
4
+ from diffusers.models.normalization import RMSNorm, LayerNorm, FP32LayerNorm, AdaLayerNormContinuous
5
+
6
+
7
+ accelerate.accelerator.convert_outputs_to_fp32 = lambda x: x
8
+
9
+
10
+ def LayerNorm_forward(self, x):
11
+ return torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps).to(x)
12
+
13
+
14
+ LayerNorm.forward = LayerNorm_forward
15
+ torch.nn.LayerNorm.forward = LayerNorm_forward
16
+
17
+
18
+ def FP32LayerNorm_forward(self, x):
19
+ origin_dtype = x.dtype
20
+ return torch.nn.functional.layer_norm(
21
+ x.float(),
22
+ self.normalized_shape,
23
+ self.weight.float() if self.weight is not None else None,
24
+ self.bias.float() if self.bias is not None else None,
25
+ self.eps,
26
+ ).to(origin_dtype)
27
+
28
+
29
+ FP32LayerNorm.forward = FP32LayerNorm_forward
30
+
31
+
32
+ def RMSNorm_forward(self, hidden_states):
33
+ input_dtype = hidden_states.dtype
34
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
35
+ hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
36
+
37
+ if self.weight is None:
38
+ return hidden_states.to(input_dtype)
39
+
40
+ return hidden_states.to(input_dtype) * self.weight.to(input_dtype)
41
+
42
+
43
+ RMSNorm.forward = RMSNorm_forward
44
+
45
+
46
+ def AdaLayerNormContinuous_forward(self, x, conditioning_embedding):
47
+ emb = self.linear(self.silu(conditioning_embedding))
48
+ scale, shift = emb.chunk(2, dim=1)
49
+ x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
50
+ return x
51
+
52
+
53
+ AdaLayerNormContinuous.forward = AdaLayerNormContinuous_forward
diffusers_helper/gradio/progress_bar.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ progress_html = '''
2
+ <div class="loader-container">
3
+ <div class="loader"></div>
4
+ <div class="progress-container">
5
+ <progress value="*number*" max="100"></progress>
6
+ </div>
7
+ <span>*text*</span>
8
+ </div>
9
+ '''
10
+
11
+ css = '''
12
+ .loader-container {
13
+ display: flex; /* Use flex to align items horizontally */
14
+ align-items: center; /* Center items vertically within the container */
15
+ white-space: nowrap; /* Prevent line breaks within the container */
16
+ }
17
+
18
+ .loader {
19
+ border: 8px solid #f3f3f3; /* Light grey */
20
+ border-top: 8px solid #3498db; /* Blue */
21
+ border-radius: 50%;
22
+ width: 30px;
23
+ height: 30px;
24
+ animation: spin 2s linear infinite;
25
+ }
26
+
27
+ @keyframes spin {
28
+ 0% { transform: rotate(0deg); }
29
+ 100% { transform: rotate(360deg); }
30
+ }
31
+
32
+ /* Style the progress bar */
33
+ progress {
34
+ appearance: none; /* Remove default styling */
35
+ height: 20px; /* Set the height of the progress bar */
36
+ border-radius: 5px; /* Round the corners of the progress bar */
37
+ background-color: #f3f3f3; /* Light grey background */
38
+ width: 100%;
39
+ vertical-align: middle !important;
40
+ }
41
+
42
+ /* Style the progress bar container */
43
+ .progress-container {
44
+ margin-left: 20px;
45
+ margin-right: 20px;
46
+ flex-grow: 1; /* Allow the progress container to take up remaining space */
47
+ }
48
+
49
+ /* Set the color of the progress bar fill */
50
+ progress::-webkit-progress-value {
51
+ background-color: #3498db; /* Blue color for the fill */
52
+ }
53
+
54
+ progress::-moz-progress-bar {
55
+ background-color: #3498db; /* Blue color for the fill in Firefox */
56
+ }
57
+
58
+ /* Style the text on the progress bar */
59
+ progress::after {
60
+ content: attr(value '%'); /* Display the progress value followed by '%' */
61
+ position: absolute;
62
+ top: 50%;
63
+ left: 50%;
64
+ transform: translate(-50%, -50%);
65
+ color: white; /* Set text color */
66
+ font-size: 14px; /* Set font size */
67
+ }
68
+
69
+ /* Style other texts */
70
+ .loader-container > span {
71
+ margin-left: 5px; /* Add spacing between the progress bar and the text */
72
+ }
73
+
74
+ .no-generating-animation > .generating {
75
+ display: none !important;
76
+ }
77
+
78
+ '''
79
+
80
+
81
+ def make_progress_bar_html(number, text):
82
+ return progress_html.replace('*number*', str(number)).replace('*text*', text)
83
+
84
+
85
+ def make_progress_bar_css():
86
+ return css
diffusers_helper/hf_login.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+
4
+ def login(token):
5
+ from huggingface_hub import login
6
+ import time
7
+
8
+ while True:
9
+ try:
10
+ login(token)
11
+ print('HF login ok.')
12
+ break
13
+ except Exception as e:
14
+ print(f'HF login failed: {e}. Retrying')
15
+ time.sleep(0.5)
16
+
17
+
18
+ hf_token = os.environ.get('HF_TOKEN', None)
19
+
20
+ if hf_token is not None:
21
+ login(hf_token)
diffusers_helper/hunyuan.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import DEFAULT_PROMPT_TEMPLATE
4
+ from diffusers_helper.utils import crop_or_pad_yield_mask
5
+
6
+
7
+ @torch.no_grad()
8
+ def encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2, max_length=256):
9
+ assert isinstance(prompt, str)
10
+
11
+ prompt = [prompt]
12
+
13
+ # LLAMA
14
+
15
+ prompt_llama = [DEFAULT_PROMPT_TEMPLATE["template"].format(p) for p in prompt]
16
+ crop_start = DEFAULT_PROMPT_TEMPLATE["crop_start"]
17
+
18
+ llama_inputs = tokenizer(
19
+ prompt_llama,
20
+ padding="max_length",
21
+ max_length=max_length + crop_start,
22
+ truncation=True,
23
+ return_tensors="pt",
24
+ return_length=False,
25
+ return_overflowing_tokens=False,
26
+ return_attention_mask=True,
27
+ )
28
+
29
+ llama_input_ids = llama_inputs.input_ids.to(text_encoder.device)
30
+ llama_attention_mask = llama_inputs.attention_mask.to(text_encoder.device)
31
+ llama_attention_length = int(llama_attention_mask.sum())
32
+
33
+ llama_outputs = text_encoder(
34
+ input_ids=llama_input_ids,
35
+ attention_mask=llama_attention_mask,
36
+ output_hidden_states=True,
37
+ )
38
+
39
+ llama_vec = llama_outputs.hidden_states[-3][:, crop_start:llama_attention_length]
40
+ # llama_vec_remaining = llama_outputs.hidden_states[-3][:, llama_attention_length:]
41
+ llama_attention_mask = llama_attention_mask[:, crop_start:llama_attention_length]
42
+
43
+ assert torch.all(llama_attention_mask.bool())
44
+
45
+ # CLIP
46
+
47
+ clip_l_input_ids = tokenizer_2(
48
+ prompt,
49
+ padding="max_length",
50
+ max_length=77,
51
+ truncation=True,
52
+ return_overflowing_tokens=False,
53
+ return_length=False,
54
+ return_tensors="pt",
55
+ ).input_ids
56
+ clip_l_pooler = text_encoder_2(clip_l_input_ids.to(text_encoder_2.device), output_hidden_states=False).pooler_output
57
+
58
+ return llama_vec, clip_l_pooler
59
+
60
+
61
+ @torch.no_grad()
62
+ def vae_decode_fake(latents):
63
+ latent_rgb_factors = [
64
+ [-0.0395, -0.0331, 0.0445],
65
+ [0.0696, 0.0795, 0.0518],
66
+ [0.0135, -0.0945, -0.0282],
67
+ [0.0108, -0.0250, -0.0765],
68
+ [-0.0209, 0.0032, 0.0224],
69
+ [-0.0804, -0.0254, -0.0639],
70
+ [-0.0991, 0.0271, -0.0669],
71
+ [-0.0646, -0.0422, -0.0400],
72
+ [-0.0696, -0.0595, -0.0894],
73
+ [-0.0799, -0.0208, -0.0375],
74
+ [0.1166, 0.1627, 0.0962],
75
+ [0.1165, 0.0432, 0.0407],
76
+ [-0.2315, -0.1920, -0.1355],
77
+ [-0.0270, 0.0401, -0.0821],
78
+ [-0.0616, -0.0997, -0.0727],
79
+ [0.0249, -0.0469, -0.1703]
80
+ ] # From comfyui
81
+
82
+ latent_rgb_factors_bias = [0.0259, -0.0192, -0.0761]
83
+
84
+ weight = torch.tensor(latent_rgb_factors, device=latents.device, dtype=latents.dtype).transpose(0, 1)[:, :, None, None, None]
85
+ bias = torch.tensor(latent_rgb_factors_bias, device=latents.device, dtype=latents.dtype)
86
+
87
+ images = torch.nn.functional.conv3d(latents, weight, bias=bias, stride=1, padding=0, dilation=1, groups=1)
88
+ images = images.clamp(0.0, 1.0)
89
+
90
+ return images
91
+
92
+
93
+ @torch.no_grad()
94
+ def vae_decode(latents, vae, image_mode=False):
95
+ latents = latents / vae.config.scaling_factor
96
+
97
+ if not image_mode:
98
+ image = vae.decode(latents.to(device=vae.device, dtype=vae.dtype)).sample
99
+ else:
100
+ latents = latents.to(device=vae.device, dtype=vae.dtype).unbind(2)
101
+ image = [vae.decode(l.unsqueeze(2)).sample for l in latents]
102
+ image = torch.cat(image, dim=2)
103
+
104
+ return image
105
+
106
+
107
+ @torch.no_grad()
108
+ def vae_encode(image, vae):
109
+ latents = vae.encode(image.to(device=vae.device, dtype=vae.dtype)).latent_dist.sample()
110
+ latents = latents * vae.config.scaling_factor
111
+ return latents
diffusers_helper/k_diffusion/uni_pc_fm.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Better Flow Matching UniPC by Lvmin Zhang
2
+ # (c) 2025
3
+ # CC BY-SA 4.0
4
+ # Attribution-ShareAlike 4.0 International Licence
5
+
6
+
7
+ import torch
8
+
9
+ from tqdm.auto import trange
10
+
11
+
12
+ def expand_dims(v, dims):
13
+ return v[(...,) + (None,) * (dims - 1)]
14
+
15
+
16
+ class FlowMatchUniPC:
17
+ def __init__(self, model, extra_args, variant='bh1'):
18
+ self.model = model
19
+ self.variant = variant
20
+ self.extra_args = extra_args
21
+
22
+ def model_fn(self, x, t):
23
+ return self.model(x, t, **self.extra_args)
24
+
25
+ def update_fn(self, x, model_prev_list, t_prev_list, t, order):
26
+ assert order <= len(model_prev_list)
27
+ dims = x.dim()
28
+
29
+ t_prev_0 = t_prev_list[-1]
30
+ lambda_prev_0 = - torch.log(t_prev_0)
31
+ lambda_t = - torch.log(t)
32
+ model_prev_0 = model_prev_list[-1]
33
+
34
+ h = lambda_t - lambda_prev_0
35
+
36
+ rks = []
37
+ D1s = []
38
+ for i in range(1, order):
39
+ t_prev_i = t_prev_list[-(i + 1)]
40
+ model_prev_i = model_prev_list[-(i + 1)]
41
+ lambda_prev_i = - torch.log(t_prev_i)
42
+ rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
43
+ rks.append(rk)
44
+ D1s.append((model_prev_i - model_prev_0) / rk)
45
+
46
+ rks.append(1.)
47
+ rks = torch.tensor(rks, device=x.device)
48
+
49
+ R = []
50
+ b = []
51
+
52
+ hh = -h[0]
53
+ h_phi_1 = torch.expm1(hh)
54
+ h_phi_k = h_phi_1 / hh - 1
55
+
56
+ factorial_i = 1
57
+
58
+ if self.variant == 'bh1':
59
+ B_h = hh
60
+ elif self.variant == 'bh2':
61
+ B_h = torch.expm1(hh)
62
+ else:
63
+ raise NotImplementedError('Bad variant!')
64
+
65
+ for i in range(1, order + 1):
66
+ R.append(torch.pow(rks, i - 1))
67
+ b.append(h_phi_k * factorial_i / B_h)
68
+ factorial_i *= (i + 1)
69
+ h_phi_k = h_phi_k / hh - 1 / factorial_i
70
+
71
+ R = torch.stack(R)
72
+ b = torch.tensor(b, device=x.device)
73
+
74
+ use_predictor = len(D1s) > 0
75
+
76
+ if use_predictor:
77
+ D1s = torch.stack(D1s, dim=1)
78
+ if order == 2:
79
+ rhos_p = torch.tensor([0.5], device=b.device)
80
+ else:
81
+ rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
82
+ else:
83
+ D1s = None
84
+ rhos_p = None
85
+
86
+ if order == 1:
87
+ rhos_c = torch.tensor([0.5], device=b.device)
88
+ else:
89
+ rhos_c = torch.linalg.solve(R, b)
90
+
91
+ x_t_ = expand_dims(t / t_prev_0, dims) * x - expand_dims(h_phi_1, dims) * model_prev_0
92
+
93
+ if use_predictor:
94
+ pred_res = torch.tensordot(D1s, rhos_p, dims=([1], [0]))
95
+ else:
96
+ pred_res = 0
97
+
98
+ x_t = x_t_ - expand_dims(B_h, dims) * pred_res
99
+ model_t = self.model_fn(x_t, t)
100
+
101
+ if D1s is not None:
102
+ corr_res = torch.tensordot(D1s, rhos_c[:-1], dims=([1], [0]))
103
+ else:
104
+ corr_res = 0
105
+
106
+ D1_t = (model_t - model_prev_0)
107
+ x_t = x_t_ - expand_dims(B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
108
+
109
+ return x_t, model_t
110
+
111
+ def sample(self, x, sigmas, callback=None, disable_pbar=False):
112
+ order = min(3, len(sigmas) - 2)
113
+ model_prev_list, t_prev_list = [], []
114
+ for i in trange(len(sigmas) - 1, disable=disable_pbar):
115
+ vec_t = sigmas[i].expand(x.shape[0])
116
+
117
+ if i == 0:
118
+ model_prev_list = [self.model_fn(x, vec_t)]
119
+ t_prev_list = [vec_t]
120
+ elif i < order:
121
+ init_order = i
122
+ x, model_x = self.update_fn(x, model_prev_list, t_prev_list, vec_t, init_order)
123
+ model_prev_list.append(model_x)
124
+ t_prev_list.append(vec_t)
125
+ else:
126
+ x, model_x = self.update_fn(x, model_prev_list, t_prev_list, vec_t, order)
127
+ model_prev_list.append(model_x)
128
+ t_prev_list.append(vec_t)
129
+
130
+ model_prev_list = model_prev_list[-order:]
131
+ t_prev_list = t_prev_list[-order:]
132
+
133
+ if callback is not None:
134
+ callback({'x': x, 'i': i, 'denoised': model_prev_list[-1]})
135
+
136
+ return model_prev_list[-1]
137
+
138
+
139
+ def sample_unipc(model, noise, sigmas, extra_args=None, callback=None, disable=False, variant='bh1'):
140
+ assert variant in ['bh1', 'bh2']
141
+ return FlowMatchUniPC(model, extra_args=extra_args, variant=variant).sample(noise, sigmas=sigmas, callback=callback, disable_pbar=disable)
diffusers_helper/k_diffusion/wrapper.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ def append_dims(x, target_dims):
5
+ return x[(...,) + (None,) * (target_dims - x.ndim)]
6
+
7
+
8
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=1.0):
9
+ if guidance_rescale == 0:
10
+ return noise_cfg
11
+
12
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
13
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
14
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
15
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1.0 - guidance_rescale) * noise_cfg
16
+ return noise_cfg
17
+
18
+
19
+ def fm_wrapper(transformer, t_scale=1000.0):
20
+ def k_model(x, sigma, **extra_args):
21
+ dtype = extra_args['dtype']
22
+ cfg_scale = extra_args['cfg_scale']
23
+ cfg_rescale = extra_args['cfg_rescale']
24
+ concat_latent = extra_args['concat_latent']
25
+
26
+ original_dtype = x.dtype
27
+ sigma = sigma.float()
28
+
29
+ x = x.to(dtype)
30
+ timestep = (sigma * t_scale).to(dtype)
31
+
32
+ if concat_latent is None:
33
+ hidden_states = x
34
+ else:
35
+ hidden_states = torch.cat([x, concat_latent.to(x)], dim=1)
36
+
37
+ pred_positive = transformer(hidden_states=hidden_states, timestep=timestep, return_dict=False, **extra_args['positive'])[0].float()
38
+
39
+ if cfg_scale == 1.0:
40
+ pred_negative = torch.zeros_like(pred_positive)
41
+ else:
42
+ pred_negative = transformer(hidden_states=hidden_states, timestep=timestep, return_dict=False, **extra_args['negative'])[0].float()
43
+
44
+ pred_cfg = pred_negative + cfg_scale * (pred_positive - pred_negative)
45
+ pred = rescale_noise_cfg(pred_cfg, pred_positive, guidance_rescale=cfg_rescale)
46
+
47
+ x0 = x.float() - pred.float() * append_dims(sigma, x.ndim)
48
+
49
+ return x0.to(dtype=original_dtype)
50
+
51
+ return k_model
diffusers_helper/memory.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # By lllyasviel
2
+
3
+
4
+ import torch
5
+
6
+
7
+ cpu = torch.device('cpu')
8
+ gpu = torch.device(f'cuda:{torch.cuda.current_device()}')
9
+ gpu_complete_modules = []
10
+
11
+
12
+ class DynamicSwapInstaller:
13
+ @staticmethod
14
+ def _install_module(module: torch.nn.Module, **kwargs):
15
+ original_class = module.__class__
16
+ module.__dict__['forge_backup_original_class'] = original_class
17
+
18
+ def hacked_get_attr(self, name: str):
19
+ if '_parameters' in self.__dict__:
20
+ _parameters = self.__dict__['_parameters']
21
+ if name in _parameters:
22
+ p = _parameters[name]
23
+ if p is None:
24
+ return None
25
+ if p.__class__ == torch.nn.Parameter:
26
+ return torch.nn.Parameter(p.to(**kwargs), requires_grad=p.requires_grad)
27
+ else:
28
+ return p.to(**kwargs)
29
+ if '_buffers' in self.__dict__:
30
+ _buffers = self.__dict__['_buffers']
31
+ if name in _buffers:
32
+ return _buffers[name].to(**kwargs)
33
+ return super(original_class, self).__getattr__(name)
34
+
35
+ module.__class__ = type('DynamicSwap_' + original_class.__name__, (original_class,), {
36
+ '__getattr__': hacked_get_attr,
37
+ })
38
+
39
+ return
40
+
41
+ @staticmethod
42
+ def _uninstall_module(module: torch.nn.Module):
43
+ if 'forge_backup_original_class' in module.__dict__:
44
+ module.__class__ = module.__dict__.pop('forge_backup_original_class')
45
+ return
46
+
47
+ @staticmethod
48
+ def install_model(model: torch.nn.Module, **kwargs):
49
+ for m in model.modules():
50
+ DynamicSwapInstaller._install_module(m, **kwargs)
51
+ return
52
+
53
+ @staticmethod
54
+ def uninstall_model(model: torch.nn.Module):
55
+ for m in model.modules():
56
+ DynamicSwapInstaller._uninstall_module(m)
57
+ return
58
+
59
+
60
+ def fake_diffusers_current_device(model: torch.nn.Module, target_device: torch.device):
61
+ if hasattr(model, 'scale_shift_table'):
62
+ model.scale_shift_table.data = model.scale_shift_table.data.to(target_device)
63
+ return
64
+
65
+ for k, p in model.named_modules():
66
+ if hasattr(p, 'weight'):
67
+ p.to(target_device)
68
+ return
69
+
70
+
71
+ def get_cuda_free_memory_gb(device=None):
72
+ if device is None:
73
+ device = gpu
74
+
75
+ memory_stats = torch.cuda.memory_stats(device)
76
+ bytes_active = memory_stats['active_bytes.all.current']
77
+ bytes_reserved = memory_stats['reserved_bytes.all.current']
78
+ bytes_free_cuda, _ = torch.cuda.mem_get_info(device)
79
+ bytes_inactive_reserved = bytes_reserved - bytes_active
80
+ bytes_total_available = bytes_free_cuda + bytes_inactive_reserved
81
+ return bytes_total_available / (1024 ** 3)
82
+
83
+
84
+ def move_model_to_device_with_memory_preservation(model, target_device, preserved_memory_gb=0):
85
+ print(f'Moving {model.__class__.__name__} to {target_device} with preserved memory: {preserved_memory_gb} GB')
86
+
87
+ for m in model.modules():
88
+ if get_cuda_free_memory_gb(target_device) <= preserved_memory_gb:
89
+ torch.cuda.empty_cache()
90
+ return
91
+
92
+ if hasattr(m, 'weight'):
93
+ m.to(device=target_device)
94
+
95
+ model.to(device=target_device)
96
+ torch.cuda.empty_cache()
97
+ return
98
+
99
+
100
+ def offload_model_from_device_for_memory_preservation(model, target_device, preserved_memory_gb=0):
101
+ print(f'Offloading {model.__class__.__name__} from {target_device} to preserve memory: {preserved_memory_gb} GB')
102
+
103
+ for m in model.modules():
104
+ if get_cuda_free_memory_gb(target_device) >= preserved_memory_gb:
105
+ torch.cuda.empty_cache()
106
+ return
107
+
108
+ if hasattr(m, 'weight'):
109
+ m.to(device=cpu)
110
+
111
+ model.to(device=cpu)
112
+ torch.cuda.empty_cache()
113
+ return
114
+
115
+
116
+ def unload_complete_models(*args):
117
+ for m in gpu_complete_modules + list(args):
118
+ if m is None:
119
+ continue
120
+ m.to(device=cpu)
121
+ print(f'Unloaded {m.__class__.__name__} as complete.')
122
+
123
+ gpu_complete_modules.clear()
124
+ torch.cuda.empty_cache()
125
+ return
126
+
127
+
128
+ def load_model_as_complete(model, target_device, unload=True):
129
+ if unload:
130
+ unload_complete_models()
131
+
132
+ model.to(device=target_device)
133
+ print(f'Loaded {model.__class__.__name__} to {target_device} as complete.')
134
+
135
+ gpu_complete_modules.append(model)
136
+ return
diffusers_helper/models/hunyuan_video_packed.py ADDED
@@ -0,0 +1,1032 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Dict, List, Optional, Tuple, Union
2
+
3
+ import torch
4
+ import einops
5
+ import torch.nn as nn
6
+ import numpy as np
7
+
8
+ from diffusers.loaders import FromOriginalModelMixin
9
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
10
+ from diffusers.loaders import PeftAdapterMixin
11
+ from diffusers.utils import logging
12
+ from diffusers.models.attention import FeedForward
13
+ from diffusers.models.attention_processor import Attention
14
+ from diffusers.models.embeddings import TimestepEmbedding, Timesteps, PixArtAlphaTextProjection
15
+ from diffusers.models.modeling_outputs import Transformer2DModelOutput
16
+ from diffusers.models.modeling_utils import ModelMixin
17
+ from diffusers_helper.dit_common import LayerNorm
18
+ from diffusers_helper.utils import zero_module
19
+
20
+
21
+ enabled_backends = []
22
+
23
+ if torch.backends.cuda.flash_sdp_enabled():
24
+ enabled_backends.append("flash")
25
+ if torch.backends.cuda.math_sdp_enabled():
26
+ enabled_backends.append("math")
27
+ if torch.backends.cuda.mem_efficient_sdp_enabled():
28
+ enabled_backends.append("mem_efficient")
29
+ if torch.backends.cuda.cudnn_sdp_enabled():
30
+ enabled_backends.append("cudnn")
31
+
32
+ print("Currently enabled native sdp backends:", enabled_backends)
33
+
34
+ try:
35
+ # raise NotImplementedError
36
+ from xformers.ops import memory_efficient_attention as xformers_attn_func
37
+ print('Xformers is installed!')
38
+ except:
39
+ print('Xformers is not installed!')
40
+ xformers_attn_func = None
41
+
42
+ try:
43
+ # raise NotImplementedError
44
+ from flash_attn import flash_attn_varlen_func, flash_attn_func
45
+ print('Flash Attn is installed!')
46
+ except:
47
+ print('Flash Attn is not installed!')
48
+ flash_attn_varlen_func = None
49
+ flash_attn_func = None
50
+
51
+ try:
52
+ # raise NotImplementedError
53
+ from sageattention import sageattn_varlen, sageattn
54
+ print('Sage Attn is installed!')
55
+ except:
56
+ print('Sage Attn is not installed!')
57
+ sageattn_varlen = None
58
+ sageattn = None
59
+
60
+
61
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
62
+
63
+
64
+ def pad_for_3d_conv(x, kernel_size):
65
+ b, c, t, h, w = x.shape
66
+ pt, ph, pw = kernel_size
67
+ pad_t = (pt - (t % pt)) % pt
68
+ pad_h = (ph - (h % ph)) % ph
69
+ pad_w = (pw - (w % pw)) % pw
70
+ return torch.nn.functional.pad(x, (0, pad_w, 0, pad_h, 0, pad_t), mode='replicate')
71
+
72
+
73
+ def center_down_sample_3d(x, kernel_size):
74
+ # pt, ph, pw = kernel_size
75
+ # cp = (pt * ph * pw) // 2
76
+ # xp = einops.rearrange(x, 'b c (t pt) (h ph) (w pw) -> (pt ph pw) b c t h w', pt=pt, ph=ph, pw=pw)
77
+ # xc = xp[cp]
78
+ # return xc
79
+ return torch.nn.functional.avg_pool3d(x, kernel_size, stride=kernel_size)
80
+
81
+
82
+ def get_cu_seqlens(text_mask, img_len):
83
+ batch_size = text_mask.shape[0]
84
+ text_len = text_mask.sum(dim=1)
85
+ max_len = text_mask.shape[1] + img_len
86
+
87
+ cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda")
88
+
89
+ for i in range(batch_size):
90
+ s = text_len[i] + img_len
91
+ s1 = i * max_len + s
92
+ s2 = (i + 1) * max_len
93
+ cu_seqlens[2 * i + 1] = s1
94
+ cu_seqlens[2 * i + 2] = s2
95
+
96
+ return cu_seqlens
97
+
98
+
99
+ def apply_rotary_emb_transposed(x, freqs_cis):
100
+ cos, sin = freqs_cis.unsqueeze(-2).chunk(2, dim=-1)
101
+ x_real, x_imag = x.unflatten(-1, (-1, 2)).unbind(-1)
102
+ x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
103
+ out = x.float() * cos + x_rotated.float() * sin
104
+ out = out.to(x)
105
+ return out
106
+
107
+
108
+ def attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv):
109
+ if cu_seqlens_q is None and cu_seqlens_kv is None and max_seqlen_q is None and max_seqlen_kv is None:
110
+ if sageattn is not None:
111
+ x = sageattn(q, k, v, tensor_layout='NHD')
112
+ return x
113
+
114
+ if flash_attn_func is not None:
115
+ x = flash_attn_func(q, k, v)
116
+ return x
117
+
118
+ if xformers_attn_func is not None:
119
+ x = xformers_attn_func(q, k, v)
120
+ return x
121
+
122
+ x = torch.nn.functional.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)).transpose(1, 2)
123
+ return x
124
+
125
+ batch_size = q.shape[0]
126
+ q = q.view(q.shape[0] * q.shape[1], *q.shape[2:])
127
+ k = k.view(k.shape[0] * k.shape[1], *k.shape[2:])
128
+ v = v.view(v.shape[0] * v.shape[1], *v.shape[2:])
129
+ if sageattn_varlen is not None:
130
+ x = sageattn_varlen(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
131
+ elif flash_attn_varlen_func is not None:
132
+ x = flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
133
+ else:
134
+ raise NotImplementedError('No Attn Installed!')
135
+ x = x.view(batch_size, max_seqlen_q, *x.shape[2:])
136
+ return x
137
+
138
+
139
+ class HunyuanAttnProcessorFlashAttnDouble:
140
+ def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
141
+ cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
142
+
143
+ query = attn.to_q(hidden_states)
144
+ key = attn.to_k(hidden_states)
145
+ value = attn.to_v(hidden_states)
146
+
147
+ query = query.unflatten(2, (attn.heads, -1))
148
+ key = key.unflatten(2, (attn.heads, -1))
149
+ value = value.unflatten(2, (attn.heads, -1))
150
+
151
+ query = attn.norm_q(query)
152
+ key = attn.norm_k(key)
153
+
154
+ query = apply_rotary_emb_transposed(query, image_rotary_emb)
155
+ key = apply_rotary_emb_transposed(key, image_rotary_emb)
156
+
157
+ encoder_query = attn.add_q_proj(encoder_hidden_states)
158
+ encoder_key = attn.add_k_proj(encoder_hidden_states)
159
+ encoder_value = attn.add_v_proj(encoder_hidden_states)
160
+
161
+ encoder_query = encoder_query.unflatten(2, (attn.heads, -1))
162
+ encoder_key = encoder_key.unflatten(2, (attn.heads, -1))
163
+ encoder_value = encoder_value.unflatten(2, (attn.heads, -1))
164
+
165
+ encoder_query = attn.norm_added_q(encoder_query)
166
+ encoder_key = attn.norm_added_k(encoder_key)
167
+
168
+ query = torch.cat([query, encoder_query], dim=1)
169
+ key = torch.cat([key, encoder_key], dim=1)
170
+ value = torch.cat([value, encoder_value], dim=1)
171
+
172
+ hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
173
+ hidden_states = hidden_states.flatten(-2)
174
+
175
+ txt_length = encoder_hidden_states.shape[1]
176
+ hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
177
+
178
+ hidden_states = attn.to_out[0](hidden_states)
179
+ hidden_states = attn.to_out[1](hidden_states)
180
+ encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
181
+
182
+ return hidden_states, encoder_hidden_states
183
+
184
+
185
+ class HunyuanAttnProcessorFlashAttnSingle:
186
+ def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
187
+ cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
188
+
189
+ hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
190
+
191
+ query = attn.to_q(hidden_states)
192
+ key = attn.to_k(hidden_states)
193
+ value = attn.to_v(hidden_states)
194
+
195
+ query = query.unflatten(2, (attn.heads, -1))
196
+ key = key.unflatten(2, (attn.heads, -1))
197
+ value = value.unflatten(2, (attn.heads, -1))
198
+
199
+ query = attn.norm_q(query)
200
+ key = attn.norm_k(key)
201
+
202
+ txt_length = encoder_hidden_states.shape[1]
203
+
204
+ query = torch.cat([apply_rotary_emb_transposed(query[:, :-txt_length], image_rotary_emb), query[:, -txt_length:]], dim=1)
205
+ key = torch.cat([apply_rotary_emb_transposed(key[:, :-txt_length], image_rotary_emb), key[:, -txt_length:]], dim=1)
206
+
207
+ hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
208
+ hidden_states = hidden_states.flatten(-2)
209
+
210
+ hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
211
+
212
+ return hidden_states, encoder_hidden_states
213
+
214
+
215
+ class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module):
216
+ def __init__(self, embedding_dim, pooled_projection_dim):
217
+ super().__init__()
218
+
219
+ self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
220
+ self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
221
+ self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
222
+ self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
223
+
224
+ def forward(self, timestep, guidance, pooled_projection):
225
+ timesteps_proj = self.time_proj(timestep)
226
+ timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
227
+
228
+ guidance_proj = self.time_proj(guidance)
229
+ guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype))
230
+
231
+ time_guidance_emb = timesteps_emb + guidance_emb
232
+
233
+ pooled_projections = self.text_embedder(pooled_projection)
234
+ conditioning = time_guidance_emb + pooled_projections
235
+
236
+ return conditioning
237
+
238
+
239
+ class CombinedTimestepTextProjEmbeddings(nn.Module):
240
+ def __init__(self, embedding_dim, pooled_projection_dim):
241
+ super().__init__()
242
+
243
+ self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
244
+ self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
245
+ self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
246
+
247
+ def forward(self, timestep, pooled_projection):
248
+ timesteps_proj = self.time_proj(timestep)
249
+ timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
250
+
251
+ pooled_projections = self.text_embedder(pooled_projection)
252
+
253
+ conditioning = timesteps_emb + pooled_projections
254
+
255
+ return conditioning
256
+
257
+
258
+ class HunyuanVideoAdaNorm(nn.Module):
259
+ def __init__(self, in_features: int, out_features: Optional[int] = None) -> None:
260
+ super().__init__()
261
+
262
+ out_features = out_features or 2 * in_features
263
+ self.linear = nn.Linear(in_features, out_features)
264
+ self.nonlinearity = nn.SiLU()
265
+
266
+ def forward(
267
+ self, temb: torch.Tensor
268
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
269
+ temb = self.linear(self.nonlinearity(temb))
270
+ gate_msa, gate_mlp = temb.chunk(2, dim=-1)
271
+ gate_msa, gate_mlp = gate_msa.unsqueeze(1), gate_mlp.unsqueeze(1)
272
+ return gate_msa, gate_mlp
273
+
274
+
275
+ class HunyuanVideoIndividualTokenRefinerBlock(nn.Module):
276
+ def __init__(
277
+ self,
278
+ num_attention_heads: int,
279
+ attention_head_dim: int,
280
+ mlp_width_ratio: str = 4.0,
281
+ mlp_drop_rate: float = 0.0,
282
+ attention_bias: bool = True,
283
+ ) -> None:
284
+ super().__init__()
285
+
286
+ hidden_size = num_attention_heads * attention_head_dim
287
+
288
+ self.norm1 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
289
+ self.attn = Attention(
290
+ query_dim=hidden_size,
291
+ cross_attention_dim=None,
292
+ heads=num_attention_heads,
293
+ dim_head=attention_head_dim,
294
+ bias=attention_bias,
295
+ )
296
+
297
+ self.norm2 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
298
+ self.ff = FeedForward(hidden_size, mult=mlp_width_ratio, activation_fn="linear-silu", dropout=mlp_drop_rate)
299
+
300
+ self.norm_out = HunyuanVideoAdaNorm(hidden_size, 2 * hidden_size)
301
+
302
+ def forward(
303
+ self,
304
+ hidden_states: torch.Tensor,
305
+ temb: torch.Tensor,
306
+ attention_mask: Optional[torch.Tensor] = None,
307
+ ) -> torch.Tensor:
308
+ norm_hidden_states = self.norm1(hidden_states)
309
+
310
+ attn_output = self.attn(
311
+ hidden_states=norm_hidden_states,
312
+ encoder_hidden_states=None,
313
+ attention_mask=attention_mask,
314
+ )
315
+
316
+ gate_msa, gate_mlp = self.norm_out(temb)
317
+ hidden_states = hidden_states + attn_output * gate_msa
318
+
319
+ ff_output = self.ff(self.norm2(hidden_states))
320
+ hidden_states = hidden_states + ff_output * gate_mlp
321
+
322
+ return hidden_states
323
+
324
+
325
+ class HunyuanVideoIndividualTokenRefiner(nn.Module):
326
+ def __init__(
327
+ self,
328
+ num_attention_heads: int,
329
+ attention_head_dim: int,
330
+ num_layers: int,
331
+ mlp_width_ratio: float = 4.0,
332
+ mlp_drop_rate: float = 0.0,
333
+ attention_bias: bool = True,
334
+ ) -> None:
335
+ super().__init__()
336
+
337
+ self.refiner_blocks = nn.ModuleList(
338
+ [
339
+ HunyuanVideoIndividualTokenRefinerBlock(
340
+ num_attention_heads=num_attention_heads,
341
+ attention_head_dim=attention_head_dim,
342
+ mlp_width_ratio=mlp_width_ratio,
343
+ mlp_drop_rate=mlp_drop_rate,
344
+ attention_bias=attention_bias,
345
+ )
346
+ for _ in range(num_layers)
347
+ ]
348
+ )
349
+
350
+ def forward(
351
+ self,
352
+ hidden_states: torch.Tensor,
353
+ temb: torch.Tensor,
354
+ attention_mask: Optional[torch.Tensor] = None,
355
+ ) -> None:
356
+ self_attn_mask = None
357
+ if attention_mask is not None:
358
+ batch_size = attention_mask.shape[0]
359
+ seq_len = attention_mask.shape[1]
360
+ attention_mask = attention_mask.to(hidden_states.device).bool()
361
+ self_attn_mask_1 = attention_mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1)
362
+ self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
363
+ self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
364
+ self_attn_mask[:, :, :, 0] = True
365
+
366
+ for block in self.refiner_blocks:
367
+ hidden_states = block(hidden_states, temb, self_attn_mask)
368
+
369
+ return hidden_states
370
+
371
+
372
+ class HunyuanVideoTokenRefiner(nn.Module):
373
+ def __init__(
374
+ self,
375
+ in_channels: int,
376
+ num_attention_heads: int,
377
+ attention_head_dim: int,
378
+ num_layers: int,
379
+ mlp_ratio: float = 4.0,
380
+ mlp_drop_rate: float = 0.0,
381
+ attention_bias: bool = True,
382
+ ) -> None:
383
+ super().__init__()
384
+
385
+ hidden_size = num_attention_heads * attention_head_dim
386
+
387
+ self.time_text_embed = CombinedTimestepTextProjEmbeddings(
388
+ embedding_dim=hidden_size, pooled_projection_dim=in_channels
389
+ )
390
+ self.proj_in = nn.Linear(in_channels, hidden_size, bias=True)
391
+ self.token_refiner = HunyuanVideoIndividualTokenRefiner(
392
+ num_attention_heads=num_attention_heads,
393
+ attention_head_dim=attention_head_dim,
394
+ num_layers=num_layers,
395
+ mlp_width_ratio=mlp_ratio,
396
+ mlp_drop_rate=mlp_drop_rate,
397
+ attention_bias=attention_bias,
398
+ )
399
+
400
+ def forward(
401
+ self,
402
+ hidden_states: torch.Tensor,
403
+ timestep: torch.LongTensor,
404
+ attention_mask: Optional[torch.LongTensor] = None,
405
+ ) -> torch.Tensor:
406
+ if attention_mask is None:
407
+ pooled_projections = hidden_states.mean(dim=1)
408
+ else:
409
+ original_dtype = hidden_states.dtype
410
+ mask_float = attention_mask.float().unsqueeze(-1)
411
+ pooled_projections = (hidden_states * mask_float).sum(dim=1) / mask_float.sum(dim=1)
412
+ pooled_projections = pooled_projections.to(original_dtype)
413
+
414
+ temb = self.time_text_embed(timestep, pooled_projections)
415
+ hidden_states = self.proj_in(hidden_states)
416
+ hidden_states = self.token_refiner(hidden_states, temb, attention_mask)
417
+
418
+ return hidden_states
419
+
420
+
421
+ class HunyuanVideoRotaryPosEmbed(nn.Module):
422
+ def __init__(self, rope_dim, theta):
423
+ super().__init__()
424
+ self.DT, self.DY, self.DX = rope_dim
425
+ self.theta = theta
426
+
427
+ @torch.no_grad()
428
+ def get_frequency(self, dim, pos):
429
+ T, H, W = pos.shape
430
+ freqs = 1.0 / (self.theta ** (torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device)[: (dim // 2)] / dim))
431
+ freqs = torch.outer(freqs, pos.reshape(-1)).unflatten(-1, (T, H, W)).repeat_interleave(2, dim=0)
432
+ return freqs.cos(), freqs.sin()
433
+
434
+ @torch.no_grad()
435
+ def forward_inner(self, frame_indices, height, width, device):
436
+ GT, GY, GX = torch.meshgrid(
437
+ frame_indices.to(device=device, dtype=torch.float32),
438
+ torch.arange(0, height, device=device, dtype=torch.float32),
439
+ torch.arange(0, width, device=device, dtype=torch.float32),
440
+ indexing="ij"
441
+ )
442
+
443
+ FCT, FST = self.get_frequency(self.DT, GT)
444
+ FCY, FSY = self.get_frequency(self.DY, GY)
445
+ FCX, FSX = self.get_frequency(self.DX, GX)
446
+
447
+ result = torch.cat([FCT, FCY, FCX, FST, FSY, FSX], dim=0)
448
+
449
+ return result.to(device)
450
+
451
+ @torch.no_grad()
452
+ def forward(self, frame_indices, height, width, device):
453
+ frame_indices = frame_indices.unbind(0)
454
+ results = [self.forward_inner(f, height, width, device) for f in frame_indices]
455
+ results = torch.stack(results, dim=0)
456
+ return results
457
+
458
+
459
+ class AdaLayerNormZero(nn.Module):
460
+ def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
461
+ super().__init__()
462
+ self.silu = nn.SiLU()
463
+ self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias)
464
+ if norm_type == "layer_norm":
465
+ self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
466
+ else:
467
+ raise ValueError(f"unknown norm_type {norm_type}")
468
+
469
+ def forward(
470
+ self,
471
+ x: torch.Tensor,
472
+ emb: Optional[torch.Tensor] = None,
473
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
474
+ emb = emb.unsqueeze(-2)
475
+ emb = self.linear(self.silu(emb))
476
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1)
477
+ x = self.norm(x) * (1 + scale_msa) + shift_msa
478
+ return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
479
+
480
+
481
+ class AdaLayerNormZeroSingle(nn.Module):
482
+ def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
483
+ super().__init__()
484
+
485
+ self.silu = nn.SiLU()
486
+ self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias)
487
+ if norm_type == "layer_norm":
488
+ self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
489
+ else:
490
+ raise ValueError(f"unknown norm_type {norm_type}")
491
+
492
+ def forward(
493
+ self,
494
+ x: torch.Tensor,
495
+ emb: Optional[torch.Tensor] = None,
496
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
497
+ emb = emb.unsqueeze(-2)
498
+ emb = self.linear(self.silu(emb))
499
+ shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=-1)
500
+ x = self.norm(x) * (1 + scale_msa) + shift_msa
501
+ return x, gate_msa
502
+
503
+
504
+ class AdaLayerNormContinuous(nn.Module):
505
+ def __init__(
506
+ self,
507
+ embedding_dim: int,
508
+ conditioning_embedding_dim: int,
509
+ elementwise_affine=True,
510
+ eps=1e-5,
511
+ bias=True,
512
+ norm_type="layer_norm",
513
+ ):
514
+ super().__init__()
515
+ self.silu = nn.SiLU()
516
+ self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias)
517
+ if norm_type == "layer_norm":
518
+ self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias)
519
+ else:
520
+ raise ValueError(f"unknown norm_type {norm_type}")
521
+
522
+ def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
523
+ emb = emb.unsqueeze(-2)
524
+ emb = self.linear(self.silu(emb))
525
+ scale, shift = emb.chunk(2, dim=-1)
526
+ x = self.norm(x) * (1 + scale) + shift
527
+ return x
528
+
529
+
530
+ class HunyuanVideoSingleTransformerBlock(nn.Module):
531
+ def __init__(
532
+ self,
533
+ num_attention_heads: int,
534
+ attention_head_dim: int,
535
+ mlp_ratio: float = 4.0,
536
+ qk_norm: str = "rms_norm",
537
+ ) -> None:
538
+ super().__init__()
539
+
540
+ hidden_size = num_attention_heads * attention_head_dim
541
+ mlp_dim = int(hidden_size * mlp_ratio)
542
+
543
+ self.attn = Attention(
544
+ query_dim=hidden_size,
545
+ cross_attention_dim=None,
546
+ dim_head=attention_head_dim,
547
+ heads=num_attention_heads,
548
+ out_dim=hidden_size,
549
+ bias=True,
550
+ processor=HunyuanAttnProcessorFlashAttnSingle(),
551
+ qk_norm=qk_norm,
552
+ eps=1e-6,
553
+ pre_only=True,
554
+ )
555
+
556
+ self.norm = AdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm")
557
+ self.proj_mlp = nn.Linear(hidden_size, mlp_dim)
558
+ self.act_mlp = nn.GELU(approximate="tanh")
559
+ self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size)
560
+
561
+ def forward(
562
+ self,
563
+ hidden_states: torch.Tensor,
564
+ encoder_hidden_states: torch.Tensor,
565
+ temb: torch.Tensor,
566
+ attention_mask: Optional[torch.Tensor] = None,
567
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
568
+ ) -> torch.Tensor:
569
+ text_seq_length = encoder_hidden_states.shape[1]
570
+ hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
571
+
572
+ residual = hidden_states
573
+
574
+ # 1. Input normalization
575
+ norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
576
+ mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
577
+
578
+ norm_hidden_states, norm_encoder_hidden_states = (
579
+ norm_hidden_states[:, :-text_seq_length, :],
580
+ norm_hidden_states[:, -text_seq_length:, :],
581
+ )
582
+
583
+ # 2. Attention
584
+ attn_output, context_attn_output = self.attn(
585
+ hidden_states=norm_hidden_states,
586
+ encoder_hidden_states=norm_encoder_hidden_states,
587
+ attention_mask=attention_mask,
588
+ image_rotary_emb=image_rotary_emb,
589
+ )
590
+ attn_output = torch.cat([attn_output, context_attn_output], dim=1)
591
+
592
+ # 3. Modulation and residual connection
593
+ hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
594
+ hidden_states = gate * self.proj_out(hidden_states)
595
+ hidden_states = hidden_states + residual
596
+
597
+ hidden_states, encoder_hidden_states = (
598
+ hidden_states[:, :-text_seq_length, :],
599
+ hidden_states[:, -text_seq_length:, :],
600
+ )
601
+ return hidden_states, encoder_hidden_states
602
+
603
+
604
+ class HunyuanVideoTransformerBlock(nn.Module):
605
+ def __init__(
606
+ self,
607
+ num_attention_heads: int,
608
+ attention_head_dim: int,
609
+ mlp_ratio: float,
610
+ qk_norm: str = "rms_norm",
611
+ ) -> None:
612
+ super().__init__()
613
+
614
+ hidden_size = num_attention_heads * attention_head_dim
615
+
616
+ self.norm1 = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
617
+ self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
618
+
619
+ self.attn = Attention(
620
+ query_dim=hidden_size,
621
+ cross_attention_dim=None,
622
+ added_kv_proj_dim=hidden_size,
623
+ dim_head=attention_head_dim,
624
+ heads=num_attention_heads,
625
+ out_dim=hidden_size,
626
+ context_pre_only=False,
627
+ bias=True,
628
+ processor=HunyuanAttnProcessorFlashAttnDouble(),
629
+ qk_norm=qk_norm,
630
+ eps=1e-6,
631
+ )
632
+
633
+ self.norm2 = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
634
+ self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
635
+
636
+ self.norm2_context = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
637
+ self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
638
+
639
+ def forward(
640
+ self,
641
+ hidden_states: torch.Tensor,
642
+ encoder_hidden_states: torch.Tensor,
643
+ temb: torch.Tensor,
644
+ attention_mask: Optional[torch.Tensor] = None,
645
+ freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
646
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
647
+ # 1. Input normalization
648
+ norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
649
+ norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(encoder_hidden_states, emb=temb)
650
+
651
+ # 2. Joint attention
652
+ attn_output, context_attn_output = self.attn(
653
+ hidden_states=norm_hidden_states,
654
+ encoder_hidden_states=norm_encoder_hidden_states,
655
+ attention_mask=attention_mask,
656
+ image_rotary_emb=freqs_cis,
657
+ )
658
+
659
+ # 3. Modulation and residual connection
660
+ hidden_states = hidden_states + attn_output * gate_msa
661
+ encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa
662
+
663
+ norm_hidden_states = self.norm2(hidden_states)
664
+ norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
665
+
666
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
667
+ norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp) + c_shift_mlp
668
+
669
+ # 4. Feed-forward
670
+ ff_output = self.ff(norm_hidden_states)
671
+ context_ff_output = self.ff_context(norm_encoder_hidden_states)
672
+
673
+ hidden_states = hidden_states + gate_mlp * ff_output
674
+ encoder_hidden_states = encoder_hidden_states + c_gate_mlp * context_ff_output
675
+
676
+ return hidden_states, encoder_hidden_states
677
+
678
+
679
+ class ClipVisionProjection(nn.Module):
680
+ def __init__(self, in_channels, out_channels):
681
+ super().__init__()
682
+ self.up = nn.Linear(in_channels, out_channels * 3)
683
+ self.down = nn.Linear(out_channels * 3, out_channels)
684
+
685
+ def forward(self, x):
686
+ projected_x = self.down(nn.functional.silu(self.up(x)))
687
+ return projected_x
688
+
689
+
690
+ class HunyuanVideoPatchEmbed(nn.Module):
691
+ def __init__(self, patch_size, in_chans, embed_dim):
692
+ super().__init__()
693
+ self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
694
+
695
+
696
+ class HunyuanVideoPatchEmbedForCleanLatents(nn.Module):
697
+ def __init__(self, inner_dim):
698
+ super().__init__()
699
+ self.proj = nn.Conv3d(16, inner_dim, kernel_size=(1, 2, 2), stride=(1, 2, 2))
700
+ self.proj_2x = nn.Conv3d(16, inner_dim, kernel_size=(2, 4, 4), stride=(2, 4, 4))
701
+ self.proj_4x = nn.Conv3d(16, inner_dim, kernel_size=(4, 8, 8), stride=(4, 8, 8))
702
+
703
+ @torch.no_grad()
704
+ def initialize_weight_from_another_conv3d(self, another_layer):
705
+ weight = another_layer.weight.detach().clone()
706
+ bias = another_layer.bias.detach().clone()
707
+
708
+ sd = {
709
+ 'proj.weight': weight.clone(),
710
+ 'proj.bias': bias.clone(),
711
+ 'proj_2x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=2, hk=2, wk=2) / 8.0,
712
+ 'proj_2x.bias': bias.clone(),
713
+ 'proj_4x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=4, hk=4, wk=4) / 64.0,
714
+ 'proj_4x.bias': bias.clone(),
715
+ }
716
+
717
+ sd = {k: v.clone() for k, v in sd.items()}
718
+
719
+ self.load_state_dict(sd)
720
+ return
721
+
722
+
723
+ class HunyuanVideoTransformer3DModelPacked(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
724
+ @register_to_config
725
+ def __init__(
726
+ self,
727
+ in_channels: int = 16,
728
+ out_channels: int = 16,
729
+ num_attention_heads: int = 24,
730
+ attention_head_dim: int = 128,
731
+ num_layers: int = 20,
732
+ num_single_layers: int = 40,
733
+ num_refiner_layers: int = 2,
734
+ mlp_ratio: float = 4.0,
735
+ patch_size: int = 2,
736
+ patch_size_t: int = 1,
737
+ qk_norm: str = "rms_norm",
738
+ guidance_embeds: bool = True,
739
+ text_embed_dim: int = 4096,
740
+ pooled_projection_dim: int = 768,
741
+ rope_theta: float = 256.0,
742
+ rope_axes_dim: Tuple[int] = (16, 56, 56),
743
+ has_image_proj=False,
744
+ image_proj_dim=1152,
745
+ has_clean_x_embedder=False,
746
+ ) -> None:
747
+ super().__init__()
748
+
749
+ inner_dim = num_attention_heads * attention_head_dim
750
+ out_channels = out_channels or in_channels
751
+
752
+ # 1. Latent and condition embedders
753
+ self.x_embedder = HunyuanVideoPatchEmbed((patch_size_t, patch_size, patch_size), in_channels, inner_dim)
754
+ self.context_embedder = HunyuanVideoTokenRefiner(
755
+ text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers
756
+ )
757
+ self.time_text_embed = CombinedTimestepGuidanceTextProjEmbeddings(inner_dim, pooled_projection_dim)
758
+
759
+ self.clean_x_embedder = None
760
+ self.image_projection = None
761
+
762
+ # 2. RoPE
763
+ self.rope = HunyuanVideoRotaryPosEmbed(rope_axes_dim, rope_theta)
764
+
765
+ # 3. Dual stream transformer blocks
766
+ self.transformer_blocks = nn.ModuleList(
767
+ [
768
+ HunyuanVideoTransformerBlock(
769
+ num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
770
+ )
771
+ for _ in range(num_layers)
772
+ ]
773
+ )
774
+
775
+ # 4. Single stream transformer blocks
776
+ self.single_transformer_blocks = nn.ModuleList(
777
+ [
778
+ HunyuanVideoSingleTransformerBlock(
779
+ num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
780
+ )
781
+ for _ in range(num_single_layers)
782
+ ]
783
+ )
784
+
785
+ # 5. Output projection
786
+ self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6)
787
+ self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels)
788
+
789
+ self.inner_dim = inner_dim
790
+ self.use_gradient_checkpointing = False
791
+ self.enable_teacache = False
792
+
793
+ if has_image_proj:
794
+ self.install_image_projection(image_proj_dim)
795
+
796
+ if has_clean_x_embedder:
797
+ self.install_clean_x_embedder()
798
+
799
+ self.high_quality_fp32_output_for_inference = False
800
+
801
+ def install_image_projection(self, in_channels):
802
+ self.image_projection = ClipVisionProjection(in_channels=in_channels, out_channels=self.inner_dim)
803
+ self.config['has_image_proj'] = True
804
+ self.config['image_proj_dim'] = in_channels
805
+
806
+ def install_clean_x_embedder(self):
807
+ self.clean_x_embedder = HunyuanVideoPatchEmbedForCleanLatents(self.inner_dim)
808
+ self.config['has_clean_x_embedder'] = True
809
+
810
+ def enable_gradient_checkpointing(self):
811
+ self.use_gradient_checkpointing = True
812
+ print('self.use_gradient_checkpointing = True')
813
+
814
+ def disable_gradient_checkpointing(self):
815
+ self.use_gradient_checkpointing = False
816
+ print('self.use_gradient_checkpointing = False')
817
+
818
+ def initialize_teacache(self, enable_teacache=True, num_steps=25, rel_l1_thresh=0.15):
819
+ self.enable_teacache = enable_teacache
820
+ self.cnt = 0
821
+ self.num_steps = num_steps
822
+ self.rel_l1_thresh = rel_l1_thresh # 0.1 for 1.6x speedup, 0.15 for 2.1x speedup
823
+ self.accumulated_rel_l1_distance = 0
824
+ self.previous_modulated_input = None
825
+ self.previous_residual = None
826
+ self.teacache_rescale_func = np.poly1d([7.33226126e+02, -4.01131952e+02, 6.75869174e+01, -3.14987800e+00, 9.61237896e-02])
827
+
828
+ def gradient_checkpointing_method(self, block, *args):
829
+ if self.use_gradient_checkpointing:
830
+ result = torch.utils.checkpoint.checkpoint(block, *args, use_reentrant=False)
831
+ else:
832
+ result = block(*args)
833
+ return result
834
+
835
+ def process_input_hidden_states(
836
+ self,
837
+ latents, latent_indices=None,
838
+ clean_latents=None, clean_latent_indices=None,
839
+ clean_latents_2x=None, clean_latent_2x_indices=None,
840
+ clean_latents_4x=None, clean_latent_4x_indices=None
841
+ ):
842
+ hidden_states = self.gradient_checkpointing_method(self.x_embedder.proj, latents)
843
+ B, C, T, H, W = hidden_states.shape
844
+
845
+ if latent_indices is None:
846
+ latent_indices = torch.arange(0, T).unsqueeze(0).expand(B, -1)
847
+
848
+ hidden_states = hidden_states.flatten(2).transpose(1, 2)
849
+
850
+ rope_freqs = self.rope(frame_indices=latent_indices, height=H, width=W, device=hidden_states.device)
851
+ rope_freqs = rope_freqs.flatten(2).transpose(1, 2)
852
+
853
+ if clean_latents is not None and clean_latent_indices is not None:
854
+ clean_latents = clean_latents.to(hidden_states)
855
+ clean_latents = self.gradient_checkpointing_method(self.clean_x_embedder.proj, clean_latents)
856
+ clean_latents = clean_latents.flatten(2).transpose(1, 2)
857
+
858
+ clean_latent_rope_freqs = self.rope(frame_indices=clean_latent_indices, height=H, width=W, device=clean_latents.device)
859
+ clean_latent_rope_freqs = clean_latent_rope_freqs.flatten(2).transpose(1, 2)
860
+
861
+ hidden_states = torch.cat([clean_latents, hidden_states], dim=1)
862
+ rope_freqs = torch.cat([clean_latent_rope_freqs, rope_freqs], dim=1)
863
+
864
+ if clean_latents_2x is not None and clean_latent_2x_indices is not None:
865
+ clean_latents_2x = clean_latents_2x.to(hidden_states)
866
+ clean_latents_2x = pad_for_3d_conv(clean_latents_2x, (2, 4, 4))
867
+ clean_latents_2x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_2x, clean_latents_2x)
868
+ clean_latents_2x = clean_latents_2x.flatten(2).transpose(1, 2)
869
+
870
+ clean_latent_2x_rope_freqs = self.rope(frame_indices=clean_latent_2x_indices, height=H, width=W, device=clean_latents_2x.device)
871
+ clean_latent_2x_rope_freqs = pad_for_3d_conv(clean_latent_2x_rope_freqs, (2, 2, 2))
872
+ clean_latent_2x_rope_freqs = center_down_sample_3d(clean_latent_2x_rope_freqs, (2, 2, 2))
873
+ clean_latent_2x_rope_freqs = clean_latent_2x_rope_freqs.flatten(2).transpose(1, 2)
874
+
875
+ hidden_states = torch.cat([clean_latents_2x, hidden_states], dim=1)
876
+ rope_freqs = torch.cat([clean_latent_2x_rope_freqs, rope_freqs], dim=1)
877
+
878
+ if clean_latents_4x is not None and clean_latent_4x_indices is not None:
879
+ clean_latents_4x = clean_latents_4x.to(hidden_states)
880
+ clean_latents_4x = pad_for_3d_conv(clean_latents_4x, (4, 8, 8))
881
+ clean_latents_4x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_4x, clean_latents_4x)
882
+ clean_latents_4x = clean_latents_4x.flatten(2).transpose(1, 2)
883
+
884
+ clean_latent_4x_rope_freqs = self.rope(frame_indices=clean_latent_4x_indices, height=H, width=W, device=clean_latents_4x.device)
885
+ clean_latent_4x_rope_freqs = pad_for_3d_conv(clean_latent_4x_rope_freqs, (4, 4, 4))
886
+ clean_latent_4x_rope_freqs = center_down_sample_3d(clean_latent_4x_rope_freqs, (4, 4, 4))
887
+ clean_latent_4x_rope_freqs = clean_latent_4x_rope_freqs.flatten(2).transpose(1, 2)
888
+
889
+ hidden_states = torch.cat([clean_latents_4x, hidden_states], dim=1)
890
+ rope_freqs = torch.cat([clean_latent_4x_rope_freqs, rope_freqs], dim=1)
891
+
892
+ return hidden_states, rope_freqs
893
+
894
+ def forward(
895
+ self,
896
+ hidden_states, timestep, encoder_hidden_states, encoder_attention_mask, pooled_projections, guidance,
897
+ latent_indices=None,
898
+ clean_latents=None, clean_latent_indices=None,
899
+ clean_latents_2x=None, clean_latent_2x_indices=None,
900
+ clean_latents_4x=None, clean_latent_4x_indices=None,
901
+ image_embeddings=None,
902
+ attention_kwargs=None, return_dict=True
903
+ ):
904
+
905
+ if attention_kwargs is None:
906
+ attention_kwargs = {}
907
+
908
+ batch_size, num_channels, num_frames, height, width = hidden_states.shape
909
+ p, p_t = self.config['patch_size'], self.config['patch_size_t']
910
+ post_patch_num_frames = num_frames // p_t
911
+ post_patch_height = height // p
912
+ post_patch_width = width // p
913
+ original_context_length = post_patch_num_frames * post_patch_height * post_patch_width
914
+
915
+ hidden_states, rope_freqs = self.process_input_hidden_states(hidden_states, latent_indices, clean_latents, clean_latent_indices, clean_latents_2x, clean_latent_2x_indices, clean_latents_4x, clean_latent_4x_indices)
916
+
917
+ temb = self.gradient_checkpointing_method(self.time_text_embed, timestep, guidance, pooled_projections)
918
+ encoder_hidden_states = self.gradient_checkpointing_method(self.context_embedder, encoder_hidden_states, timestep, encoder_attention_mask)
919
+
920
+ if self.image_projection is not None:
921
+ assert image_embeddings is not None, 'You must use image embeddings!'
922
+ extra_encoder_hidden_states = self.gradient_checkpointing_method(self.image_projection, image_embeddings)
923
+ extra_attention_mask = torch.ones((batch_size, extra_encoder_hidden_states.shape[1]), dtype=encoder_attention_mask.dtype, device=encoder_attention_mask.device)
924
+
925
+ # must cat before (not after) encoder_hidden_states, due to attn masking
926
+ encoder_hidden_states = torch.cat([extra_encoder_hidden_states, encoder_hidden_states], dim=1)
927
+ encoder_attention_mask = torch.cat([extra_attention_mask, encoder_attention_mask], dim=1)
928
+
929
+ with torch.no_grad():
930
+ if batch_size == 1:
931
+ # When batch size is 1, we do not need any masks or var-len funcs since cropping is mathematically same to what we want
932
+ # If they are not same, then their impls are wrong. Ours are always the correct one.
933
+ text_len = encoder_attention_mask.sum().item()
934
+ encoder_hidden_states = encoder_hidden_states[:, :text_len]
935
+ attention_mask = None, None, None, None
936
+ else:
937
+ img_seq_len = hidden_states.shape[1]
938
+ txt_seq_len = encoder_hidden_states.shape[1]
939
+
940
+ cu_seqlens_q = get_cu_seqlens(encoder_attention_mask, img_seq_len)
941
+ cu_seqlens_kv = cu_seqlens_q
942
+ max_seqlen_q = img_seq_len + txt_seq_len
943
+ max_seqlen_kv = max_seqlen_q
944
+
945
+ attention_mask = cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv
946
+
947
+ if self.enable_teacache:
948
+ modulated_inp = self.transformer_blocks[0].norm1(hidden_states, emb=temb)[0]
949
+
950
+ if self.cnt == 0 or self.cnt == self.num_steps-1:
951
+ should_calc = True
952
+ self.accumulated_rel_l1_distance = 0
953
+ else:
954
+ curr_rel_l1 = ((modulated_inp - self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()
955
+ self.accumulated_rel_l1_distance += self.teacache_rescale_func(curr_rel_l1)
956
+ should_calc = self.accumulated_rel_l1_distance >= self.rel_l1_thresh
957
+
958
+ if should_calc:
959
+ self.accumulated_rel_l1_distance = 0
960
+
961
+ self.previous_modulated_input = modulated_inp
962
+ self.cnt += 1
963
+
964
+ if self.cnt == self.num_steps:
965
+ self.cnt = 0
966
+
967
+ if not should_calc:
968
+ hidden_states = hidden_states + self.previous_residual
969
+ else:
970
+ ori_hidden_states = hidden_states.clone()
971
+
972
+ for block_id, block in enumerate(self.transformer_blocks):
973
+ hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
974
+ block,
975
+ hidden_states,
976
+ encoder_hidden_states,
977
+ temb,
978
+ attention_mask,
979
+ rope_freqs
980
+ )
981
+
982
+ for block_id, block in enumerate(self.single_transformer_blocks):
983
+ hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
984
+ block,
985
+ hidden_states,
986
+ encoder_hidden_states,
987
+ temb,
988
+ attention_mask,
989
+ rope_freqs
990
+ )
991
+
992
+ self.previous_residual = hidden_states - ori_hidden_states
993
+ else:
994
+ for block_id, block in enumerate(self.transformer_blocks):
995
+ hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
996
+ block,
997
+ hidden_states,
998
+ encoder_hidden_states,
999
+ temb,
1000
+ attention_mask,
1001
+ rope_freqs
1002
+ )
1003
+
1004
+ for block_id, block in enumerate(self.single_transformer_blocks):
1005
+ hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
1006
+ block,
1007
+ hidden_states,
1008
+ encoder_hidden_states,
1009
+ temb,
1010
+ attention_mask,
1011
+ rope_freqs
1012
+ )
1013
+
1014
+ hidden_states = self.gradient_checkpointing_method(self.norm_out, hidden_states, temb)
1015
+
1016
+ hidden_states = hidden_states[:, -original_context_length:, :]
1017
+
1018
+ if self.high_quality_fp32_output_for_inference:
1019
+ hidden_states = hidden_states.to(dtype=torch.float32)
1020
+ if self.proj_out.weight.dtype != torch.float32:
1021
+ self.proj_out.to(dtype=torch.float32)
1022
+
1023
+ hidden_states = self.gradient_checkpointing_method(self.proj_out, hidden_states)
1024
+
1025
+ hidden_states = einops.rearrange(hidden_states, 'b (t h w) (c pt ph pw) -> b c (t pt) (h ph) (w pw)',
1026
+ t=post_patch_num_frames, h=post_patch_height, w=post_patch_width,
1027
+ pt=p_t, ph=p, pw=p)
1028
+
1029
+ if return_dict:
1030
+ return Transformer2DModelOutput(sample=hidden_states)
1031
+
1032
+ return hidden_states,
diffusers_helper/pipelines/k_diffusion_hunyuan.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import math
3
+
4
+ from diffusers_helper.k_diffusion.uni_pc_fm import sample_unipc
5
+ from diffusers_helper.k_diffusion.wrapper import fm_wrapper
6
+ from diffusers_helper.utils import repeat_to_batch_size
7
+
8
+
9
+ def flux_time_shift(t, mu=1.15, sigma=1.0):
10
+ return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
11
+
12
+
13
+ def calculate_flux_mu(context_length, x1=256, y1=0.5, x2=4096, y2=1.15, exp_max=7.0):
14
+ k = (y2 - y1) / (x2 - x1)
15
+ b = y1 - k * x1
16
+ mu = k * context_length + b
17
+ mu = min(mu, math.log(exp_max))
18
+ return mu
19
+
20
+
21
+ def get_flux_sigmas_from_mu(n, mu):
22
+ sigmas = torch.linspace(1, 0, steps=n + 1)
23
+ sigmas = flux_time_shift(sigmas, mu=mu)
24
+ return sigmas
25
+
26
+
27
+ @torch.inference_mode()
28
+ def sample_hunyuan(
29
+ transformer,
30
+ sampler='unipc',
31
+ initial_latent=None,
32
+ concat_latent=None,
33
+ strength=1.0,
34
+ width=512,
35
+ height=512,
36
+ frames=16,
37
+ real_guidance_scale=1.0,
38
+ distilled_guidance_scale=6.0,
39
+ guidance_rescale=0.0,
40
+ shift=None,
41
+ num_inference_steps=25,
42
+ batch_size=None,
43
+ generator=None,
44
+ prompt_embeds=None,
45
+ prompt_embeds_mask=None,
46
+ prompt_poolers=None,
47
+ negative_prompt_embeds=None,
48
+ negative_prompt_embeds_mask=None,
49
+ negative_prompt_poolers=None,
50
+ dtype=torch.bfloat16,
51
+ device=None,
52
+ negative_kwargs=None,
53
+ callback=None,
54
+ **kwargs,
55
+ ):
56
+ device = device or transformer.device
57
+
58
+ if batch_size is None:
59
+ batch_size = int(prompt_embeds.shape[0])
60
+
61
+ latents = torch.randn((batch_size, 16, (frames + 3) // 4, height // 8, width // 8), generator=generator, device=generator.device).to(device=device, dtype=torch.float32)
62
+
63
+ B, C, T, H, W = latents.shape
64
+ seq_length = T * H * W // 4
65
+
66
+ if shift is None:
67
+ mu = calculate_flux_mu(seq_length, exp_max=7.0)
68
+ else:
69
+ mu = math.log(shift)
70
+
71
+ sigmas = get_flux_sigmas_from_mu(num_inference_steps, mu).to(device)
72
+
73
+ k_model = fm_wrapper(transformer)
74
+
75
+ if initial_latent is not None:
76
+ sigmas = sigmas * strength
77
+ first_sigma = sigmas[0].to(device=device, dtype=torch.float32)
78
+ initial_latent = initial_latent.to(device=device, dtype=torch.float32)
79
+ latents = initial_latent.float() * (1.0 - first_sigma) + latents.float() * first_sigma
80
+
81
+ if concat_latent is not None:
82
+ concat_latent = concat_latent.to(latents)
83
+
84
+ distilled_guidance = torch.tensor([distilled_guidance_scale * 1000.0] * batch_size).to(device=device, dtype=dtype)
85
+
86
+ prompt_embeds = repeat_to_batch_size(prompt_embeds, batch_size)
87
+ prompt_embeds_mask = repeat_to_batch_size(prompt_embeds_mask, batch_size)
88
+ prompt_poolers = repeat_to_batch_size(prompt_poolers, batch_size)
89
+ negative_prompt_embeds = repeat_to_batch_size(negative_prompt_embeds, batch_size)
90
+ negative_prompt_embeds_mask = repeat_to_batch_size(negative_prompt_embeds_mask, batch_size)
91
+ negative_prompt_poolers = repeat_to_batch_size(negative_prompt_poolers, batch_size)
92
+ concat_latent = repeat_to_batch_size(concat_latent, batch_size)
93
+
94
+ sampler_kwargs = dict(
95
+ dtype=dtype,
96
+ cfg_scale=real_guidance_scale,
97
+ cfg_rescale=guidance_rescale,
98
+ concat_latent=concat_latent,
99
+ positive=dict(
100
+ pooled_projections=prompt_poolers,
101
+ encoder_hidden_states=prompt_embeds,
102
+ encoder_attention_mask=prompt_embeds_mask,
103
+ guidance=distilled_guidance,
104
+ **kwargs,
105
+ ),
106
+ negative=dict(
107
+ pooled_projections=negative_prompt_poolers,
108
+ encoder_hidden_states=negative_prompt_embeds,
109
+ encoder_attention_mask=negative_prompt_embeds_mask,
110
+ guidance=distilled_guidance,
111
+ **(kwargs if negative_kwargs is None else {**kwargs, **negative_kwargs}),
112
+ )
113
+ )
114
+
115
+ if sampler == 'unipc':
116
+ results = sample_unipc(k_model, latents, sigmas, extra_args=sampler_kwargs, disable=False, callback=callback)
117
+ else:
118
+ raise NotImplementedError(f'Sampler {sampler} is not supported.')
119
+
120
+ return results
diffusers_helper/thread_utils.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+
3
+ from threading import Thread, Lock
4
+
5
+
6
+ class Listener:
7
+ task_queue = []
8
+ lock = Lock()
9
+ thread = None
10
+
11
+ @classmethod
12
+ def _process_tasks(cls):
13
+ while True:
14
+ task = None
15
+ with cls.lock:
16
+ if cls.task_queue:
17
+ task = cls.task_queue.pop(0)
18
+
19
+ if task is None:
20
+ time.sleep(0.001)
21
+ continue
22
+
23
+ func, args, kwargs = task
24
+ try:
25
+ func(*args, **kwargs)
26
+ except Exception as e:
27
+ print(f"Error in listener thread: {e}")
28
+
29
+ @classmethod
30
+ def add_task(cls, func, *args, **kwargs):
31
+ with cls.lock:
32
+ cls.task_queue.append((func, args, kwargs))
33
+
34
+ if cls.thread is None:
35
+ cls.thread = Thread(target=cls._process_tasks, daemon=True)
36
+ cls.thread.start()
37
+
38
+
39
+ def async_run(func, *args, **kwargs):
40
+ Listener.add_task(func, *args, **kwargs)
41
+
42
+
43
+ class FIFOQueue:
44
+ def __init__(self):
45
+ self.queue = []
46
+ self.lock = Lock()
47
+
48
+ def push(self, item):
49
+ with self.lock:
50
+ self.queue.append(item)
51
+
52
+ def pop(self):
53
+ with self.lock:
54
+ if self.queue:
55
+ return self.queue.pop(0)
56
+ return None
57
+
58
+ def top(self):
59
+ with self.lock:
60
+ if self.queue:
61
+ return self.queue[0]
62
+ return None
63
+
64
+ def next(self):
65
+ while True:
66
+ with self.lock:
67
+ if self.queue:
68
+ return self.queue.pop(0)
69
+
70
+ time.sleep(0.001)
71
+
72
+
73
+ class AsyncStream:
74
+ def __init__(self):
75
+ self.input_queue = FIFOQueue()
76
+ self.output_queue = FIFOQueue()
diffusers_helper/utils.py ADDED
@@ -0,0 +1,613 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import json
4
+ import random
5
+ import glob
6
+ import torch
7
+ import einops
8
+ import numpy as np
9
+ import datetime
10
+ import torchvision
11
+
12
+ import safetensors.torch as sf
13
+ from PIL import Image
14
+
15
+
16
+ def min_resize(x, m):
17
+ if x.shape[0] < x.shape[1]:
18
+ s0 = m
19
+ s1 = int(float(m) / float(x.shape[0]) * float(x.shape[1]))
20
+ else:
21
+ s0 = int(float(m) / float(x.shape[1]) * float(x.shape[0]))
22
+ s1 = m
23
+ new_max = max(s1, s0)
24
+ raw_max = max(x.shape[0], x.shape[1])
25
+ if new_max < raw_max:
26
+ interpolation = cv2.INTER_AREA
27
+ else:
28
+ interpolation = cv2.INTER_LANCZOS4
29
+ y = cv2.resize(x, (s1, s0), interpolation=interpolation)
30
+ return y
31
+
32
+
33
+ def d_resize(x, y):
34
+ H, W, C = y.shape
35
+ new_min = min(H, W)
36
+ raw_min = min(x.shape[0], x.shape[1])
37
+ if new_min < raw_min:
38
+ interpolation = cv2.INTER_AREA
39
+ else:
40
+ interpolation = cv2.INTER_LANCZOS4
41
+ y = cv2.resize(x, (W, H), interpolation=interpolation)
42
+ return y
43
+
44
+
45
+ def resize_and_center_crop(image, target_width, target_height):
46
+ if target_height == image.shape[0] and target_width == image.shape[1]:
47
+ return image
48
+
49
+ pil_image = Image.fromarray(image)
50
+ original_width, original_height = pil_image.size
51
+ scale_factor = max(target_width / original_width, target_height / original_height)
52
+ resized_width = int(round(original_width * scale_factor))
53
+ resized_height = int(round(original_height * scale_factor))
54
+ resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS)
55
+ left = (resized_width - target_width) / 2
56
+ top = (resized_height - target_height) / 2
57
+ right = (resized_width + target_width) / 2
58
+ bottom = (resized_height + target_height) / 2
59
+ cropped_image = resized_image.crop((left, top, right, bottom))
60
+ return np.array(cropped_image)
61
+
62
+
63
+ def resize_and_center_crop_pytorch(image, target_width, target_height):
64
+ B, C, H, W = image.shape
65
+
66
+ if H == target_height and W == target_width:
67
+ return image
68
+
69
+ scale_factor = max(target_width / W, target_height / H)
70
+ resized_width = int(round(W * scale_factor))
71
+ resized_height = int(round(H * scale_factor))
72
+
73
+ resized = torch.nn.functional.interpolate(image, size=(resized_height, resized_width), mode='bilinear', align_corners=False)
74
+
75
+ top = (resized_height - target_height) // 2
76
+ left = (resized_width - target_width) // 2
77
+ cropped = resized[:, :, top:top + target_height, left:left + target_width]
78
+
79
+ return cropped
80
+
81
+
82
+ def resize_without_crop(image, target_width, target_height):
83
+ if target_height == image.shape[0] and target_width == image.shape[1]:
84
+ return image
85
+
86
+ pil_image = Image.fromarray(image)
87
+ resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
88
+ return np.array(resized_image)
89
+
90
+
91
+ def just_crop(image, w, h):
92
+ if h == image.shape[0] and w == image.shape[1]:
93
+ return image
94
+
95
+ original_height, original_width = image.shape[:2]
96
+ k = min(original_height / h, original_width / w)
97
+ new_width = int(round(w * k))
98
+ new_height = int(round(h * k))
99
+ x_start = (original_width - new_width) // 2
100
+ y_start = (original_height - new_height) // 2
101
+ cropped_image = image[y_start:y_start + new_height, x_start:x_start + new_width]
102
+ return cropped_image
103
+
104
+
105
+ def write_to_json(data, file_path):
106
+ temp_file_path = file_path + ".tmp"
107
+ with open(temp_file_path, 'wt', encoding='utf-8') as temp_file:
108
+ json.dump(data, temp_file, indent=4)
109
+ os.replace(temp_file_path, file_path)
110
+ return
111
+
112
+
113
+ def read_from_json(file_path):
114
+ with open(file_path, 'rt', encoding='utf-8') as file:
115
+ data = json.load(file)
116
+ return data
117
+
118
+
119
+ def get_active_parameters(m):
120
+ return {k: v for k, v in m.named_parameters() if v.requires_grad}
121
+
122
+
123
+ def cast_training_params(m, dtype=torch.float32):
124
+ result = {}
125
+ for n, param in m.named_parameters():
126
+ if param.requires_grad:
127
+ param.data = param.to(dtype)
128
+ result[n] = param
129
+ return result
130
+
131
+
132
+ def separate_lora_AB(parameters, B_patterns=None):
133
+ parameters_normal = {}
134
+ parameters_B = {}
135
+
136
+ if B_patterns is None:
137
+ B_patterns = ['.lora_B.', '__zero__']
138
+
139
+ for k, v in parameters.items():
140
+ if any(B_pattern in k for B_pattern in B_patterns):
141
+ parameters_B[k] = v
142
+ else:
143
+ parameters_normal[k] = v
144
+
145
+ return parameters_normal, parameters_B
146
+
147
+
148
+ def set_attr_recursive(obj, attr, value):
149
+ attrs = attr.split(".")
150
+ for name in attrs[:-1]:
151
+ obj = getattr(obj, name)
152
+ setattr(obj, attrs[-1], value)
153
+ return
154
+
155
+
156
+ def print_tensor_list_size(tensors):
157
+ total_size = 0
158
+ total_elements = 0
159
+
160
+ if isinstance(tensors, dict):
161
+ tensors = tensors.values()
162
+
163
+ for tensor in tensors:
164
+ total_size += tensor.nelement() * tensor.element_size()
165
+ total_elements += tensor.nelement()
166
+
167
+ total_size_MB = total_size / (1024 ** 2)
168
+ total_elements_B = total_elements / 1e9
169
+
170
+ print(f"Total number of tensors: {len(tensors)}")
171
+ print(f"Total size of tensors: {total_size_MB:.2f} MB")
172
+ print(f"Total number of parameters: {total_elements_B:.3f} billion")
173
+ return
174
+
175
+
176
+ @torch.no_grad()
177
+ def batch_mixture(a, b=None, probability_a=0.5, mask_a=None):
178
+ batch_size = a.size(0)
179
+
180
+ if b is None:
181
+ b = torch.zeros_like(a)
182
+
183
+ if mask_a is None:
184
+ mask_a = torch.rand(batch_size) < probability_a
185
+
186
+ mask_a = mask_a.to(a.device)
187
+ mask_a = mask_a.reshape((batch_size,) + (1,) * (a.dim() - 1))
188
+ result = torch.where(mask_a, a, b)
189
+ return result
190
+
191
+
192
+ @torch.no_grad()
193
+ def zero_module(module):
194
+ for p in module.parameters():
195
+ p.detach().zero_()
196
+ return module
197
+
198
+
199
+ @torch.no_grad()
200
+ def supress_lower_channels(m, k, alpha=0.01):
201
+ data = m.weight.data.clone()
202
+
203
+ assert int(data.shape[1]) >= k
204
+
205
+ data[:, :k] = data[:, :k] * alpha
206
+ m.weight.data = data.contiguous().clone()
207
+ return m
208
+
209
+
210
+ def freeze_module(m):
211
+ if not hasattr(m, '_forward_inside_frozen_module'):
212
+ m._forward_inside_frozen_module = m.forward
213
+ m.requires_grad_(False)
214
+ m.forward = torch.no_grad()(m.forward)
215
+ return m
216
+
217
+
218
+ def get_latest_safetensors(folder_path):
219
+ safetensors_files = glob.glob(os.path.join(folder_path, '*.safetensors'))
220
+
221
+ if not safetensors_files:
222
+ raise ValueError('No file to resume!')
223
+
224
+ latest_file = max(safetensors_files, key=os.path.getmtime)
225
+ latest_file = os.path.abspath(os.path.realpath(latest_file))
226
+ return latest_file
227
+
228
+
229
+ def generate_random_prompt_from_tags(tags_str, min_length=3, max_length=32):
230
+ tags = tags_str.split(', ')
231
+ tags = random.sample(tags, k=min(random.randint(min_length, max_length), len(tags)))
232
+ prompt = ', '.join(tags)
233
+ return prompt
234
+
235
+
236
+ def interpolate_numbers(a, b, n, round_to_int=False, gamma=1.0):
237
+ numbers = a + (b - a) * (np.linspace(0, 1, n) ** gamma)
238
+ if round_to_int:
239
+ numbers = np.round(numbers).astype(int)
240
+ return numbers.tolist()
241
+
242
+
243
+ def uniform_random_by_intervals(inclusive, exclusive, n, round_to_int=False):
244
+ edges = np.linspace(0, 1, n + 1)
245
+ points = np.random.uniform(edges[:-1], edges[1:])
246
+ numbers = inclusive + (exclusive - inclusive) * points
247
+ if round_to_int:
248
+ numbers = np.round(numbers).astype(int)
249
+ return numbers.tolist()
250
+
251
+
252
+ def soft_append_bcthw(history, current, overlap=0):
253
+ if overlap <= 0:
254
+ return torch.cat([history, current], dim=2)
255
+
256
+ assert history.shape[2] >= overlap, f"History length ({history.shape[2]}) must be >= overlap ({overlap})"
257
+ assert current.shape[2] >= overlap, f"Current length ({current.shape[2]}) must be >= overlap ({overlap})"
258
+
259
+ weights = torch.linspace(1, 0, overlap, dtype=history.dtype, device=history.device).view(1, 1, -1, 1, 1)
260
+ blended = weights * history[:, :, -overlap:] + (1 - weights) * current[:, :, :overlap]
261
+ output = torch.cat([history[:, :, :-overlap], blended, current[:, :, overlap:]], dim=2)
262
+
263
+ return output.to(history)
264
+
265
+
266
+ def save_bcthw_as_mp4(x, output_filename, fps=10, crf=0):
267
+ b, c, t, h, w = x.shape
268
+
269
+ per_row = b
270
+ for p in [6, 5, 4, 3, 2]:
271
+ if b % p == 0:
272
+ per_row = p
273
+ break
274
+
275
+ os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
276
+ x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
277
+ x = x.detach().cpu().to(torch.uint8)
278
+ x = einops.rearrange(x, '(m n) c t h w -> t (m h) (n w) c', n=per_row)
279
+ torchvision.io.write_video(output_filename, x, fps=fps, video_codec='libx264', options={'crf': str(int(crf))})
280
+ return x
281
+
282
+
283
+ def save_bcthw_as_png(x, output_filename):
284
+ os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
285
+ x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
286
+ x = x.detach().cpu().to(torch.uint8)
287
+ x = einops.rearrange(x, 'b c t h w -> c (b h) (t w)')
288
+ torchvision.io.write_png(x, output_filename)
289
+ return output_filename
290
+
291
+
292
+ def save_bchw_as_png(x, output_filename):
293
+ os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
294
+ x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
295
+ x = x.detach().cpu().to(torch.uint8)
296
+ x = einops.rearrange(x, 'b c h w -> c h (b w)')
297
+ torchvision.io.write_png(x, output_filename)
298
+ return output_filename
299
+
300
+
301
+ def add_tensors_with_padding(tensor1, tensor2):
302
+ if tensor1.shape == tensor2.shape:
303
+ return tensor1 + tensor2
304
+
305
+ shape1 = tensor1.shape
306
+ shape2 = tensor2.shape
307
+
308
+ new_shape = tuple(max(s1, s2) for s1, s2 in zip(shape1, shape2))
309
+
310
+ padded_tensor1 = torch.zeros(new_shape)
311
+ padded_tensor2 = torch.zeros(new_shape)
312
+
313
+ padded_tensor1[tuple(slice(0, s) for s in shape1)] = tensor1
314
+ padded_tensor2[tuple(slice(0, s) for s in shape2)] = tensor2
315
+
316
+ result = padded_tensor1 + padded_tensor2
317
+ return result
318
+
319
+
320
+ def print_free_mem():
321
+ torch.cuda.empty_cache()
322
+ free_mem, total_mem = torch.cuda.mem_get_info(0)
323
+ free_mem_mb = free_mem / (1024 ** 2)
324
+ total_mem_mb = total_mem / (1024 ** 2)
325
+ print(f"Free memory: {free_mem_mb:.2f} MB")
326
+ print(f"Total memory: {total_mem_mb:.2f} MB")
327
+ return
328
+
329
+
330
+ def print_gpu_parameters(device, state_dict, log_count=1):
331
+ summary = {"device": device, "keys_count": len(state_dict)}
332
+
333
+ logged_params = {}
334
+ for i, (key, tensor) in enumerate(state_dict.items()):
335
+ if i >= log_count:
336
+ break
337
+ logged_params[key] = tensor.flatten()[:3].tolist()
338
+
339
+ summary["params"] = logged_params
340
+
341
+ print(str(summary))
342
+ return
343
+
344
+
345
+ def visualize_txt_as_img(width, height, text, font_path='font/DejaVuSans.ttf', size=18):
346
+ from PIL import Image, ImageDraw, ImageFont
347
+
348
+ txt = Image.new("RGB", (width, height), color="white")
349
+ draw = ImageDraw.Draw(txt)
350
+ font = ImageFont.truetype(font_path, size=size)
351
+
352
+ if text == '':
353
+ return np.array(txt)
354
+
355
+ # Split text into lines that fit within the image width
356
+ lines = []
357
+ words = text.split()
358
+ current_line = words[0]
359
+
360
+ for word in words[1:]:
361
+ line_with_word = f"{current_line} {word}"
362
+ if draw.textbbox((0, 0), line_with_word, font=font)[2] <= width:
363
+ current_line = line_with_word
364
+ else:
365
+ lines.append(current_line)
366
+ current_line = word
367
+
368
+ lines.append(current_line)
369
+
370
+ # Draw the text line by line
371
+ y = 0
372
+ line_height = draw.textbbox((0, 0), "A", font=font)[3]
373
+
374
+ for line in lines:
375
+ if y + line_height > height:
376
+ break # stop drawing if the next line will be outside the image
377
+ draw.text((0, y), line, fill="black", font=font)
378
+ y += line_height
379
+
380
+ return np.array(txt)
381
+
382
+
383
+ def blue_mark(x):
384
+ x = x.copy()
385
+ c = x[:, :, 2]
386
+ b = cv2.blur(c, (9, 9))
387
+ x[:, :, 2] = ((c - b) * 16.0 + b).clip(-1, 1)
388
+ return x
389
+
390
+
391
+ def green_mark(x):
392
+ x = x.copy()
393
+ x[:, :, 2] = -1
394
+ x[:, :, 0] = -1
395
+ return x
396
+
397
+
398
+ def frame_mark(x):
399
+ x = x.copy()
400
+ x[:64] = -1
401
+ x[-64:] = -1
402
+ x[:, :8] = 1
403
+ x[:, -8:] = 1
404
+ return x
405
+
406
+
407
+ @torch.inference_mode()
408
+ def pytorch2numpy(imgs):
409
+ results = []
410
+ for x in imgs:
411
+ y = x.movedim(0, -1)
412
+ y = y * 127.5 + 127.5
413
+ y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
414
+ results.append(y)
415
+ return results
416
+
417
+
418
+ @torch.inference_mode()
419
+ def numpy2pytorch(imgs):
420
+ h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.5 - 1.0
421
+ h = h.movedim(-1, 1)
422
+ return h
423
+
424
+
425
+ @torch.no_grad()
426
+ def duplicate_prefix_to_suffix(x, count, zero_out=False):
427
+ if zero_out:
428
+ return torch.cat([x, torch.zeros_like(x[:count])], dim=0)
429
+ else:
430
+ return torch.cat([x, x[:count]], dim=0)
431
+
432
+
433
+ def weighted_mse(a, b, weight):
434
+ return torch.mean(weight.float() * (a.float() - b.float()) ** 2)
435
+
436
+
437
+ def clamped_linear_interpolation(x, x_min, y_min, x_max, y_max, sigma=1.0):
438
+ x = (x - x_min) / (x_max - x_min)
439
+ x = max(0.0, min(x, 1.0))
440
+ x = x ** sigma
441
+ return y_min + x * (y_max - y_min)
442
+
443
+
444
+ def expand_to_dims(x, target_dims):
445
+ return x.view(*x.shape, *([1] * max(0, target_dims - x.dim())))
446
+
447
+
448
+ def repeat_to_batch_size(tensor: torch.Tensor, batch_size: int):
449
+ if tensor is None:
450
+ return None
451
+
452
+ first_dim = tensor.shape[0]
453
+
454
+ if first_dim == batch_size:
455
+ return tensor
456
+
457
+ if batch_size % first_dim != 0:
458
+ raise ValueError(f"Cannot evenly repeat first dim {first_dim} to match batch_size {batch_size}.")
459
+
460
+ repeat_times = batch_size // first_dim
461
+
462
+ return tensor.repeat(repeat_times, *[1] * (tensor.dim() - 1))
463
+
464
+
465
+ def dim5(x):
466
+ return expand_to_dims(x, 5)
467
+
468
+
469
+ def dim4(x):
470
+ return expand_to_dims(x, 4)
471
+
472
+
473
+ def dim3(x):
474
+ return expand_to_dims(x, 3)
475
+
476
+
477
+ def crop_or_pad_yield_mask(x, length):
478
+ B, F, C = x.shape
479
+ device = x.device
480
+ dtype = x.dtype
481
+
482
+ if F < length:
483
+ y = torch.zeros((B, length, C), dtype=dtype, device=device)
484
+ mask = torch.zeros((B, length), dtype=torch.bool, device=device)
485
+ y[:, :F, :] = x
486
+ mask[:, :F] = True
487
+ return y, mask
488
+
489
+ return x[:, :length, :], torch.ones((B, length), dtype=torch.bool, device=device)
490
+
491
+
492
+ def extend_dim(x, dim, minimal_length, zero_pad=False):
493
+ original_length = int(x.shape[dim])
494
+
495
+ if original_length >= minimal_length:
496
+ return x
497
+
498
+ if zero_pad:
499
+ padding_shape = list(x.shape)
500
+ padding_shape[dim] = minimal_length - original_length
501
+ padding = torch.zeros(padding_shape, dtype=x.dtype, device=x.device)
502
+ else:
503
+ idx = (slice(None),) * dim + (slice(-1, None),) + (slice(None),) * (len(x.shape) - dim - 1)
504
+ last_element = x[idx]
505
+ padding = last_element.repeat_interleave(minimal_length - original_length, dim=dim)
506
+
507
+ return torch.cat([x, padding], dim=dim)
508
+
509
+
510
+ def lazy_positional_encoding(t, repeats=None):
511
+ if not isinstance(t, list):
512
+ t = [t]
513
+
514
+ from diffusers.models.embeddings import get_timestep_embedding
515
+
516
+ te = torch.tensor(t)
517
+ te = get_timestep_embedding(timesteps=te, embedding_dim=256, flip_sin_to_cos=True, downscale_freq_shift=0.0, scale=1.0)
518
+
519
+ if repeats is None:
520
+ return te
521
+
522
+ te = te[:, None, :].expand(-1, repeats, -1)
523
+
524
+ return te
525
+
526
+
527
+ def state_dict_offset_merge(A, B, C=None):
528
+ result = {}
529
+ keys = A.keys()
530
+
531
+ for key in keys:
532
+ A_value = A[key]
533
+ B_value = B[key].to(A_value)
534
+
535
+ if C is None:
536
+ result[key] = A_value + B_value
537
+ else:
538
+ C_value = C[key].to(A_value)
539
+ result[key] = A_value + B_value - C_value
540
+
541
+ return result
542
+
543
+
544
+ def state_dict_weighted_merge(state_dicts, weights):
545
+ if len(state_dicts) != len(weights):
546
+ raise ValueError("Number of state dictionaries must match number of weights")
547
+
548
+ if not state_dicts:
549
+ return {}
550
+
551
+ total_weight = sum(weights)
552
+
553
+ if total_weight == 0:
554
+ raise ValueError("Sum of weights cannot be zero")
555
+
556
+ normalized_weights = [w / total_weight for w in weights]
557
+
558
+ keys = state_dicts[0].keys()
559
+ result = {}
560
+
561
+ for key in keys:
562
+ result[key] = state_dicts[0][key] * normalized_weights[0]
563
+
564
+ for i in range(1, len(state_dicts)):
565
+ state_dict_value = state_dicts[i][key].to(result[key])
566
+ result[key] += state_dict_value * normalized_weights[i]
567
+
568
+ return result
569
+
570
+
571
+ def group_files_by_folder(all_files):
572
+ grouped_files = {}
573
+
574
+ for file in all_files:
575
+ folder_name = os.path.basename(os.path.dirname(file))
576
+ if folder_name not in grouped_files:
577
+ grouped_files[folder_name] = []
578
+ grouped_files[folder_name].append(file)
579
+
580
+ list_of_lists = list(grouped_files.values())
581
+ return list_of_lists
582
+
583
+
584
+ def generate_timestamp():
585
+ now = datetime.datetime.now()
586
+ timestamp = now.strftime('%y%m%d_%H%M%S')
587
+ milliseconds = f"{int(now.microsecond / 1000):03d}"
588
+ random_number = random.randint(0, 9999)
589
+ return f"{timestamp}_{milliseconds}_{random_number}"
590
+
591
+
592
+ def write_PIL_image_with_png_info(image, metadata, path):
593
+ from PIL.PngImagePlugin import PngInfo
594
+
595
+ png_info = PngInfo()
596
+ for key, value in metadata.items():
597
+ png_info.add_text(key, value)
598
+
599
+ image.save(path, "PNG", pnginfo=png_info)
600
+ return image
601
+
602
+
603
+ def torch_safe_save(content, path):
604
+ torch.save(content, path + '_tmp')
605
+ os.replace(path + '_tmp', path)
606
+ return path
607
+
608
+
609
+ def move_optimizer_to_device(optimizer, device):
610
+ for state in optimizer.state.values():
611
+ for k, v in state.items():
612
+ if isinstance(v, torch.Tensor):
613
+ state[k] = v.to(device)