Spaces:
Running
on
Zero
Running
on
Zero
Delete diffusers_helper
Browse files- diffusers_helper/__init__.py +0 -1
- diffusers_helper/bucket_tools.py +0 -30
- diffusers_helper/clip_vision.py +0 -12
- diffusers_helper/dit_common.py +0 -53
- diffusers_helper/gradio/progress_bar.py +0 -86
- diffusers_helper/hf_login.py +0 -25
- diffusers_helper/hunyuan.py +0 -111
- diffusers_helper/k_diffusion/uni_pc_fm.py +0 -155
- diffusers_helper/k_diffusion/wrapper.py +0 -51
- diffusers_helper/memory.py +0 -210
- diffusers_helper/models/hunyuan_video_packed.py +0 -1032
- diffusers_helper/pipelines/k_diffusion_hunyuan.py +0 -120
- diffusers_helper/thread_utils.py +0 -123
- diffusers_helper/utils.py +0 -613
diffusers_helper/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
# diffusers_helper package
|
|
|
|
diffusers_helper/bucket_tools.py
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
bucket_options = {
|
2 |
-
640: [
|
3 |
-
(416, 960),
|
4 |
-
(448, 864),
|
5 |
-
(480, 832),
|
6 |
-
(512, 768),
|
7 |
-
(544, 704),
|
8 |
-
(576, 672),
|
9 |
-
(608, 640),
|
10 |
-
(640, 608),
|
11 |
-
(672, 576),
|
12 |
-
(704, 544),
|
13 |
-
(768, 512),
|
14 |
-
(832, 480),
|
15 |
-
(864, 448),
|
16 |
-
(960, 416),
|
17 |
-
],
|
18 |
-
}
|
19 |
-
|
20 |
-
|
21 |
-
def find_nearest_bucket(h, w, resolution=640):
|
22 |
-
min_metric = float('inf')
|
23 |
-
best_bucket = None
|
24 |
-
for (bucket_h, bucket_w) in bucket_options[resolution]:
|
25 |
-
metric = abs(h * bucket_w - w * bucket_h)
|
26 |
-
if metric <= min_metric:
|
27 |
-
min_metric = metric
|
28 |
-
best_bucket = (bucket_h, bucket_w)
|
29 |
-
return best_bucket
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusers_helper/clip_vision.py
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
|
3 |
-
|
4 |
-
def hf_clip_vision_encode(image, feature_extractor, image_encoder):
|
5 |
-
assert isinstance(image, np.ndarray)
|
6 |
-
assert image.ndim == 3 and image.shape[2] == 3
|
7 |
-
assert image.dtype == np.uint8
|
8 |
-
|
9 |
-
preprocessed = feature_extractor.preprocess(images=image, return_tensors="pt").to(device=image_encoder.device, dtype=image_encoder.dtype)
|
10 |
-
image_encoder_output = image_encoder(**preprocessed)
|
11 |
-
|
12 |
-
return image_encoder_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusers_helper/dit_common.py
DELETED
@@ -1,53 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import accelerate.accelerator
|
3 |
-
|
4 |
-
from diffusers.models.normalization import RMSNorm, LayerNorm, FP32LayerNorm, AdaLayerNormContinuous
|
5 |
-
|
6 |
-
|
7 |
-
accelerate.accelerator.convert_outputs_to_fp32 = lambda x: x
|
8 |
-
|
9 |
-
|
10 |
-
def LayerNorm_forward(self, x):
|
11 |
-
return torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps).to(x)
|
12 |
-
|
13 |
-
|
14 |
-
LayerNorm.forward = LayerNorm_forward
|
15 |
-
torch.nn.LayerNorm.forward = LayerNorm_forward
|
16 |
-
|
17 |
-
|
18 |
-
def FP32LayerNorm_forward(self, x):
|
19 |
-
origin_dtype = x.dtype
|
20 |
-
return torch.nn.functional.layer_norm(
|
21 |
-
x.float(),
|
22 |
-
self.normalized_shape,
|
23 |
-
self.weight.float() if self.weight is not None else None,
|
24 |
-
self.bias.float() if self.bias is not None else None,
|
25 |
-
self.eps,
|
26 |
-
).to(origin_dtype)
|
27 |
-
|
28 |
-
|
29 |
-
FP32LayerNorm.forward = FP32LayerNorm_forward
|
30 |
-
|
31 |
-
|
32 |
-
def RMSNorm_forward(self, hidden_states):
|
33 |
-
input_dtype = hidden_states.dtype
|
34 |
-
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
35 |
-
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
|
36 |
-
|
37 |
-
if self.weight is None:
|
38 |
-
return hidden_states.to(input_dtype)
|
39 |
-
|
40 |
-
return hidden_states.to(input_dtype) * self.weight.to(input_dtype)
|
41 |
-
|
42 |
-
|
43 |
-
RMSNorm.forward = RMSNorm_forward
|
44 |
-
|
45 |
-
|
46 |
-
def AdaLayerNormContinuous_forward(self, x, conditioning_embedding):
|
47 |
-
emb = self.linear(self.silu(conditioning_embedding))
|
48 |
-
scale, shift = emb.chunk(2, dim=1)
|
49 |
-
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
|
50 |
-
return x
|
51 |
-
|
52 |
-
|
53 |
-
AdaLayerNormContinuous.forward = AdaLayerNormContinuous_forward
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusers_helper/gradio/progress_bar.py
DELETED
@@ -1,86 +0,0 @@
|
|
1 |
-
progress_html = '''
|
2 |
-
<div class="loader-container">
|
3 |
-
<div class="loader"></div>
|
4 |
-
<div class="progress-container">
|
5 |
-
<progress value="*number*" max="100"></progress>
|
6 |
-
</div>
|
7 |
-
<span>*text*</span>
|
8 |
-
</div>
|
9 |
-
'''
|
10 |
-
|
11 |
-
css = '''
|
12 |
-
.loader-container {
|
13 |
-
display: flex; /* Use flex to align items horizontally */
|
14 |
-
align-items: center; /* Center items vertically within the container */
|
15 |
-
white-space: nowrap; /* Prevent line breaks within the container */
|
16 |
-
}
|
17 |
-
|
18 |
-
.loader {
|
19 |
-
border: 8px solid #f3f3f3; /* Light grey */
|
20 |
-
border-top: 8px solid #3498db; /* Blue */
|
21 |
-
border-radius: 50%;
|
22 |
-
width: 30px;
|
23 |
-
height: 30px;
|
24 |
-
animation: spin 2s linear infinite;
|
25 |
-
}
|
26 |
-
|
27 |
-
@keyframes spin {
|
28 |
-
0% { transform: rotate(0deg); }
|
29 |
-
100% { transform: rotate(360deg); }
|
30 |
-
}
|
31 |
-
|
32 |
-
/* Style the progress bar */
|
33 |
-
progress {
|
34 |
-
appearance: none; /* Remove default styling */
|
35 |
-
height: 20px; /* Set the height of the progress bar */
|
36 |
-
border-radius: 5px; /* Round the corners of the progress bar */
|
37 |
-
background-color: #f3f3f3; /* Light grey background */
|
38 |
-
width: 100%;
|
39 |
-
vertical-align: middle !important;
|
40 |
-
}
|
41 |
-
|
42 |
-
/* Style the progress bar container */
|
43 |
-
.progress-container {
|
44 |
-
margin-left: 20px;
|
45 |
-
margin-right: 20px;
|
46 |
-
flex-grow: 1; /* Allow the progress container to take up remaining space */
|
47 |
-
}
|
48 |
-
|
49 |
-
/* Set the color of the progress bar fill */
|
50 |
-
progress::-webkit-progress-value {
|
51 |
-
background-color: #3498db; /* Blue color for the fill */
|
52 |
-
}
|
53 |
-
|
54 |
-
progress::-moz-progress-bar {
|
55 |
-
background-color: #3498db; /* Blue color for the fill in Firefox */
|
56 |
-
}
|
57 |
-
|
58 |
-
/* Style the text on the progress bar */
|
59 |
-
progress::after {
|
60 |
-
content: attr(value '%'); /* Display the progress value followed by '%' */
|
61 |
-
position: absolute;
|
62 |
-
top: 50%;
|
63 |
-
left: 50%;
|
64 |
-
transform: translate(-50%, -50%);
|
65 |
-
color: white; /* Set text color */
|
66 |
-
font-size: 14px; /* Set font size */
|
67 |
-
}
|
68 |
-
|
69 |
-
/* Style other texts */
|
70 |
-
.loader-container > span {
|
71 |
-
margin-left: 5px; /* Add spacing between the progress bar and the text */
|
72 |
-
}
|
73 |
-
|
74 |
-
.no-generating-animation > .generating {
|
75 |
-
display: none !important;
|
76 |
-
}
|
77 |
-
|
78 |
-
'''
|
79 |
-
|
80 |
-
|
81 |
-
def make_progress_bar_html(number, text):
|
82 |
-
return progress_html.replace('*number*', str(number)).replace('*text*', text)
|
83 |
-
|
84 |
-
|
85 |
-
def make_progress_bar_css():
|
86 |
-
return css
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusers_helper/hf_login.py
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from huggingface_hub import login
|
3 |
-
|
4 |
-
def login():
|
5 |
-
# 如果是在Hugging Face Space环境中运行,使用环境变量中的token
|
6 |
-
if os.environ.get('SPACE_ID') is not None:
|
7 |
-
print("Running in Hugging Face Space, using environment HF_TOKEN")
|
8 |
-
# Space自带访问权限,无需额外登录
|
9 |
-
return
|
10 |
-
|
11 |
-
# 如果本地环境有token,则使用它登录
|
12 |
-
hf_token = os.environ.get('HF_TOKEN')
|
13 |
-
if hf_token:
|
14 |
-
print("Logging in with HF_TOKEN from environment")
|
15 |
-
login(token=hf_token)
|
16 |
-
return
|
17 |
-
|
18 |
-
# 检查缓存的token
|
19 |
-
cache_file = os.path.expanduser('~/.huggingface/token')
|
20 |
-
if os.path.exists(cache_file):
|
21 |
-
print("Found cached Hugging Face token")
|
22 |
-
return
|
23 |
-
|
24 |
-
print("No Hugging Face token found. Using public access.")
|
25 |
-
# 无token时使用公共访问,速度可能较慢且有限制
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusers_helper/hunyuan.py
DELETED
@@ -1,111 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
|
3 |
-
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import DEFAULT_PROMPT_TEMPLATE
|
4 |
-
from diffusers_helper.utils import crop_or_pad_yield_mask
|
5 |
-
|
6 |
-
|
7 |
-
@torch.no_grad()
|
8 |
-
def encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2, max_length=256):
|
9 |
-
assert isinstance(prompt, str)
|
10 |
-
|
11 |
-
prompt = [prompt]
|
12 |
-
|
13 |
-
# LLAMA
|
14 |
-
|
15 |
-
prompt_llama = [DEFAULT_PROMPT_TEMPLATE["template"].format(p) for p in prompt]
|
16 |
-
crop_start = DEFAULT_PROMPT_TEMPLATE["crop_start"]
|
17 |
-
|
18 |
-
llama_inputs = tokenizer(
|
19 |
-
prompt_llama,
|
20 |
-
padding="max_length",
|
21 |
-
max_length=max_length + crop_start,
|
22 |
-
truncation=True,
|
23 |
-
return_tensors="pt",
|
24 |
-
return_length=False,
|
25 |
-
return_overflowing_tokens=False,
|
26 |
-
return_attention_mask=True,
|
27 |
-
)
|
28 |
-
|
29 |
-
llama_input_ids = llama_inputs.input_ids.to(text_encoder.device)
|
30 |
-
llama_attention_mask = llama_inputs.attention_mask.to(text_encoder.device)
|
31 |
-
llama_attention_length = int(llama_attention_mask.sum())
|
32 |
-
|
33 |
-
llama_outputs = text_encoder(
|
34 |
-
input_ids=llama_input_ids,
|
35 |
-
attention_mask=llama_attention_mask,
|
36 |
-
output_hidden_states=True,
|
37 |
-
)
|
38 |
-
|
39 |
-
llama_vec = llama_outputs.hidden_states[-3][:, crop_start:llama_attention_length]
|
40 |
-
# llama_vec_remaining = llama_outputs.hidden_states[-3][:, llama_attention_length:]
|
41 |
-
llama_attention_mask = llama_attention_mask[:, crop_start:llama_attention_length]
|
42 |
-
|
43 |
-
assert torch.all(llama_attention_mask.bool())
|
44 |
-
|
45 |
-
# CLIP
|
46 |
-
|
47 |
-
clip_l_input_ids = tokenizer_2(
|
48 |
-
prompt,
|
49 |
-
padding="max_length",
|
50 |
-
max_length=77,
|
51 |
-
truncation=True,
|
52 |
-
return_overflowing_tokens=False,
|
53 |
-
return_length=False,
|
54 |
-
return_tensors="pt",
|
55 |
-
).input_ids
|
56 |
-
clip_l_pooler = text_encoder_2(clip_l_input_ids.to(text_encoder_2.device), output_hidden_states=False).pooler_output
|
57 |
-
|
58 |
-
return llama_vec, clip_l_pooler
|
59 |
-
|
60 |
-
|
61 |
-
@torch.no_grad()
|
62 |
-
def vae_decode_fake(latents):
|
63 |
-
latent_rgb_factors = [
|
64 |
-
[-0.0395, -0.0331, 0.0445],
|
65 |
-
[0.0696, 0.0795, 0.0518],
|
66 |
-
[0.0135, -0.0945, -0.0282],
|
67 |
-
[0.0108, -0.0250, -0.0765],
|
68 |
-
[-0.0209, 0.0032, 0.0224],
|
69 |
-
[-0.0804, -0.0254, -0.0639],
|
70 |
-
[-0.0991, 0.0271, -0.0669],
|
71 |
-
[-0.0646, -0.0422, -0.0400],
|
72 |
-
[-0.0696, -0.0595, -0.0894],
|
73 |
-
[-0.0799, -0.0208, -0.0375],
|
74 |
-
[0.1166, 0.1627, 0.0962],
|
75 |
-
[0.1165, 0.0432, 0.0407],
|
76 |
-
[-0.2315, -0.1920, -0.1355],
|
77 |
-
[-0.0270, 0.0401, -0.0821],
|
78 |
-
[-0.0616, -0.0997, -0.0727],
|
79 |
-
[0.0249, -0.0469, -0.1703]
|
80 |
-
] # From comfyui
|
81 |
-
|
82 |
-
latent_rgb_factors_bias = [0.0259, -0.0192, -0.0761]
|
83 |
-
|
84 |
-
weight = torch.tensor(latent_rgb_factors, device=latents.device, dtype=latents.dtype).transpose(0, 1)[:, :, None, None, None]
|
85 |
-
bias = torch.tensor(latent_rgb_factors_bias, device=latents.device, dtype=latents.dtype)
|
86 |
-
|
87 |
-
images = torch.nn.functional.conv3d(latents, weight, bias=bias, stride=1, padding=0, dilation=1, groups=1)
|
88 |
-
images = images.clamp(0.0, 1.0)
|
89 |
-
|
90 |
-
return images
|
91 |
-
|
92 |
-
|
93 |
-
@torch.no_grad()
|
94 |
-
def vae_decode(latents, vae, image_mode=False):
|
95 |
-
latents = latents / vae.config.scaling_factor
|
96 |
-
|
97 |
-
if not image_mode:
|
98 |
-
image = vae.decode(latents.to(device=vae.device, dtype=vae.dtype)).sample
|
99 |
-
else:
|
100 |
-
latents = latents.to(device=vae.device, dtype=vae.dtype).unbind(2)
|
101 |
-
image = [vae.decode(l.unsqueeze(2)).sample for l in latents]
|
102 |
-
image = torch.cat(image, dim=2)
|
103 |
-
|
104 |
-
return image
|
105 |
-
|
106 |
-
|
107 |
-
@torch.no_grad()
|
108 |
-
def vae_encode(image, vae):
|
109 |
-
latents = vae.encode(image.to(device=vae.device, dtype=vae.dtype)).latent_dist.sample()
|
110 |
-
latents = latents * vae.config.scaling_factor
|
111 |
-
return latents
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusers_helper/k_diffusion/uni_pc_fm.py
DELETED
@@ -1,155 +0,0 @@
|
|
1 |
-
# Better Flow Matching UniPC by Lvmin Zhang
|
2 |
-
# (c) 2025
|
3 |
-
# CC BY-SA 4.0
|
4 |
-
# Attribution-ShareAlike 4.0 International Licence
|
5 |
-
|
6 |
-
|
7 |
-
import torch
|
8 |
-
|
9 |
-
from tqdm.auto import trange
|
10 |
-
|
11 |
-
|
12 |
-
def expand_dims(v, dims):
|
13 |
-
return v[(...,) + (None,) * (dims - 1)]
|
14 |
-
|
15 |
-
|
16 |
-
class FlowMatchUniPC:
|
17 |
-
def __init__(self, model, extra_args, variant='bh1'):
|
18 |
-
self.model = model
|
19 |
-
self.variant = variant
|
20 |
-
self.extra_args = extra_args
|
21 |
-
|
22 |
-
def model_fn(self, x, t):
|
23 |
-
return self.model(x, t, **self.extra_args)
|
24 |
-
|
25 |
-
def update_fn(self, x, model_prev_list, t_prev_list, t, order):
|
26 |
-
assert order <= len(model_prev_list)
|
27 |
-
dims = x.dim()
|
28 |
-
|
29 |
-
t_prev_0 = t_prev_list[-1]
|
30 |
-
lambda_prev_0 = - torch.log(t_prev_0)
|
31 |
-
lambda_t = - torch.log(t)
|
32 |
-
model_prev_0 = model_prev_list[-1]
|
33 |
-
|
34 |
-
h = lambda_t - lambda_prev_0
|
35 |
-
|
36 |
-
rks = []
|
37 |
-
D1s = []
|
38 |
-
for i in range(1, order):
|
39 |
-
t_prev_i = t_prev_list[-(i + 1)]
|
40 |
-
model_prev_i = model_prev_list[-(i + 1)]
|
41 |
-
lambda_prev_i = - torch.log(t_prev_i)
|
42 |
-
rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
|
43 |
-
rks.append(rk)
|
44 |
-
D1s.append((model_prev_i - model_prev_0) / rk)
|
45 |
-
|
46 |
-
rks.append(1.)
|
47 |
-
rks = torch.tensor(rks, device=x.device)
|
48 |
-
|
49 |
-
R = []
|
50 |
-
b = []
|
51 |
-
|
52 |
-
hh = -h[0]
|
53 |
-
h_phi_1 = torch.expm1(hh)
|
54 |
-
h_phi_k = h_phi_1 / hh - 1
|
55 |
-
|
56 |
-
factorial_i = 1
|
57 |
-
|
58 |
-
if self.variant == 'bh1':
|
59 |
-
B_h = hh
|
60 |
-
elif self.variant == 'bh2':
|
61 |
-
B_h = torch.expm1(hh)
|
62 |
-
else:
|
63 |
-
raise NotImplementedError('Bad variant!')
|
64 |
-
|
65 |
-
for i in range(1, order + 1):
|
66 |
-
R.append(torch.pow(rks, i - 1))
|
67 |
-
b.append(h_phi_k * factorial_i / B_h)
|
68 |
-
factorial_i *= (i + 1)
|
69 |
-
h_phi_k = h_phi_k / hh - 1 / factorial_i
|
70 |
-
|
71 |
-
R = torch.stack(R)
|
72 |
-
b = torch.tensor(b, device=x.device)
|
73 |
-
|
74 |
-
use_predictor = len(D1s) > 0
|
75 |
-
|
76 |
-
if use_predictor:
|
77 |
-
D1s = torch.stack(D1s, dim=1)
|
78 |
-
if order == 2:
|
79 |
-
rhos_p = torch.tensor([0.5], device=b.device)
|
80 |
-
else:
|
81 |
-
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
|
82 |
-
else:
|
83 |
-
D1s = None
|
84 |
-
rhos_p = None
|
85 |
-
|
86 |
-
if order == 1:
|
87 |
-
rhos_c = torch.tensor([0.5], device=b.device)
|
88 |
-
else:
|
89 |
-
rhos_c = torch.linalg.solve(R, b)
|
90 |
-
|
91 |
-
x_t_ = expand_dims(t / t_prev_0, dims) * x - expand_dims(h_phi_1, dims) * model_prev_0
|
92 |
-
|
93 |
-
if use_predictor:
|
94 |
-
pred_res = torch.tensordot(D1s, rhos_p, dims=([1], [0]))
|
95 |
-
else:
|
96 |
-
pred_res = 0
|
97 |
-
|
98 |
-
x_t = x_t_ - expand_dims(B_h, dims) * pred_res
|
99 |
-
model_t = self.model_fn(x_t, t)
|
100 |
-
|
101 |
-
if D1s is not None:
|
102 |
-
corr_res = torch.tensordot(D1s, rhos_c[:-1], dims=([1], [0]))
|
103 |
-
else:
|
104 |
-
corr_res = 0
|
105 |
-
|
106 |
-
D1_t = (model_t - model_prev_0)
|
107 |
-
x_t = x_t_ - expand_dims(B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
|
108 |
-
|
109 |
-
return x_t, model_t
|
110 |
-
|
111 |
-
def sample(self, x, sigmas, callback=None, disable_pbar=False):
|
112 |
-
order = min(3, len(sigmas) - 2)
|
113 |
-
model_prev_list, t_prev_list = [], []
|
114 |
-
try:
|
115 |
-
for i in trange(len(sigmas) - 1, disable=disable_pbar):
|
116 |
-
vec_t = sigmas[i].expand(x.shape[0])
|
117 |
-
|
118 |
-
if i == 0:
|
119 |
-
model_prev_list = [self.model_fn(x, vec_t)]
|
120 |
-
t_prev_list = [vec_t]
|
121 |
-
elif i < order:
|
122 |
-
init_order = i
|
123 |
-
x, model_x = self.update_fn(x, model_prev_list, t_prev_list, vec_t, init_order)
|
124 |
-
model_prev_list.append(model_x)
|
125 |
-
t_prev_list.append(vec_t)
|
126 |
-
else:
|
127 |
-
x, model_x = self.update_fn(x, model_prev_list, t_prev_list, vec_t, order)
|
128 |
-
model_prev_list.append(model_x)
|
129 |
-
t_prev_list.append(vec_t)
|
130 |
-
|
131 |
-
model_prev_list = model_prev_list[-order:]
|
132 |
-
t_prev_list = t_prev_list[-order:]
|
133 |
-
|
134 |
-
if callback is not None:
|
135 |
-
try:
|
136 |
-
callback({'x': x, 'i': i, 'denoised': model_prev_list[-1]})
|
137 |
-
except KeyboardInterrupt as e:
|
138 |
-
print(f"User interruption detected: {e}")
|
139 |
-
# Return the last available result
|
140 |
-
return model_prev_list[-1]
|
141 |
-
except KeyboardInterrupt as e:
|
142 |
-
print(f"Process interrupted: {e}")
|
143 |
-
# Return the last available result if we have one
|
144 |
-
if model_prev_list:
|
145 |
-
return model_prev_list[-1]
|
146 |
-
else:
|
147 |
-
# If no results yet, re-raise the exception
|
148 |
-
raise
|
149 |
-
|
150 |
-
return model_prev_list[-1]
|
151 |
-
|
152 |
-
|
153 |
-
def sample_unipc(model, noise, sigmas, extra_args=None, callback=None, disable=False, variant='bh1'):
|
154 |
-
assert variant in ['bh1', 'bh2']
|
155 |
-
return FlowMatchUniPC(model, extra_args=extra_args, variant=variant).sample(noise, sigmas=sigmas, callback=callback, disable_pbar=disable)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusers_helper/k_diffusion/wrapper.py
DELETED
@@ -1,51 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
|
3 |
-
|
4 |
-
def append_dims(x, target_dims):
|
5 |
-
return x[(...,) + (None,) * (target_dims - x.ndim)]
|
6 |
-
|
7 |
-
|
8 |
-
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=1.0):
|
9 |
-
if guidance_rescale == 0:
|
10 |
-
return noise_cfg
|
11 |
-
|
12 |
-
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
13 |
-
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
14 |
-
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
15 |
-
noise_cfg = guidance_rescale * noise_pred_rescaled + (1.0 - guidance_rescale) * noise_cfg
|
16 |
-
return noise_cfg
|
17 |
-
|
18 |
-
|
19 |
-
def fm_wrapper(transformer, t_scale=1000.0):
|
20 |
-
def k_model(x, sigma, **extra_args):
|
21 |
-
dtype = extra_args['dtype']
|
22 |
-
cfg_scale = extra_args['cfg_scale']
|
23 |
-
cfg_rescale = extra_args['cfg_rescale']
|
24 |
-
concat_latent = extra_args['concat_latent']
|
25 |
-
|
26 |
-
original_dtype = x.dtype
|
27 |
-
sigma = sigma.float()
|
28 |
-
|
29 |
-
x = x.to(dtype)
|
30 |
-
timestep = (sigma * t_scale).to(dtype)
|
31 |
-
|
32 |
-
if concat_latent is None:
|
33 |
-
hidden_states = x
|
34 |
-
else:
|
35 |
-
hidden_states = torch.cat([x, concat_latent.to(x)], dim=1)
|
36 |
-
|
37 |
-
pred_positive = transformer(hidden_states=hidden_states, timestep=timestep, return_dict=False, **extra_args['positive'])[0].float()
|
38 |
-
|
39 |
-
if cfg_scale == 1.0:
|
40 |
-
pred_negative = torch.zeros_like(pred_positive)
|
41 |
-
else:
|
42 |
-
pred_negative = transformer(hidden_states=hidden_states, timestep=timestep, return_dict=False, **extra_args['negative'])[0].float()
|
43 |
-
|
44 |
-
pred_cfg = pred_negative + cfg_scale * (pred_positive - pred_negative)
|
45 |
-
pred = rescale_noise_cfg(pred_cfg, pred_positive, guidance_rescale=cfg_rescale)
|
46 |
-
|
47 |
-
x0 = x.float() - pred.float() * append_dims(sigma, x.ndim)
|
48 |
-
|
49 |
-
return x0.to(dtype=original_dtype)
|
50 |
-
|
51 |
-
return k_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusers_helper/memory.py
DELETED
@@ -1,210 +0,0 @@
|
|
1 |
-
# By lllyasviel
|
2 |
-
|
3 |
-
|
4 |
-
import torch
|
5 |
-
import os
|
6 |
-
|
7 |
-
# 检查是否在Hugging Face Space环境中
|
8 |
-
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
|
9 |
-
|
10 |
-
# 设置CPU设备
|
11 |
-
cpu = torch.device('cpu')
|
12 |
-
|
13 |
-
# 在Stateless GPU环境中,不要在主进程初始化CUDA
|
14 |
-
def get_gpu_device():
|
15 |
-
if IN_HF_SPACE:
|
16 |
-
# 在Spaces中将延迟初始化GPU设备
|
17 |
-
return 'cuda' # 返回字符串,而不是实际初始化设备
|
18 |
-
|
19 |
-
# 非Spaces环境正常初始化
|
20 |
-
try:
|
21 |
-
if torch.cuda.is_available():
|
22 |
-
return torch.device(f'cuda:{torch.cuda.current_device()}')
|
23 |
-
else:
|
24 |
-
print("CUDA不可用,使用CPU作为默认设备")
|
25 |
-
return torch.device('cpu')
|
26 |
-
except Exception as e:
|
27 |
-
print(f"初始化CUDA设备时出错: {e}")
|
28 |
-
print("回退到CPU设备")
|
29 |
-
return torch.device('cpu')
|
30 |
-
|
31 |
-
# 保存一个字符串表示,而不是实际的设备对象
|
32 |
-
gpu = get_gpu_device()
|
33 |
-
|
34 |
-
gpu_complete_modules = []
|
35 |
-
|
36 |
-
|
37 |
-
class DynamicSwapInstaller:
|
38 |
-
@staticmethod
|
39 |
-
def _install_module(module: torch.nn.Module, **kwargs):
|
40 |
-
original_class = module.__class__
|
41 |
-
module.__dict__['forge_backup_original_class'] = original_class
|
42 |
-
|
43 |
-
def hacked_get_attr(self, name: str):
|
44 |
-
if '_parameters' in self.__dict__:
|
45 |
-
_parameters = self.__dict__['_parameters']
|
46 |
-
if name in _parameters:
|
47 |
-
p = _parameters[name]
|
48 |
-
if p is None:
|
49 |
-
return None
|
50 |
-
if p.__class__ == torch.nn.Parameter:
|
51 |
-
return torch.nn.Parameter(p.to(**kwargs), requires_grad=p.requires_grad)
|
52 |
-
else:
|
53 |
-
return p.to(**kwargs)
|
54 |
-
if '_buffers' in self.__dict__:
|
55 |
-
_buffers = self.__dict__['_buffers']
|
56 |
-
if name in _buffers:
|
57 |
-
return _buffers[name].to(**kwargs)
|
58 |
-
return super(original_class, self).__getattr__(name)
|
59 |
-
|
60 |
-
module.__class__ = type('DynamicSwap_' + original_class.__name__, (original_class,), {
|
61 |
-
'__getattr__': hacked_get_attr,
|
62 |
-
})
|
63 |
-
|
64 |
-
return
|
65 |
-
|
66 |
-
@staticmethod
|
67 |
-
def _uninstall_module(module: torch.nn.Module):
|
68 |
-
if 'forge_backup_original_class' in module.__dict__:
|
69 |
-
module.__class__ = module.__dict__.pop('forge_backup_original_class')
|
70 |
-
return
|
71 |
-
|
72 |
-
@staticmethod
|
73 |
-
def install_model(model: torch.nn.Module, **kwargs):
|
74 |
-
for m in model.modules():
|
75 |
-
DynamicSwapInstaller._install_module(m, **kwargs)
|
76 |
-
return
|
77 |
-
|
78 |
-
@staticmethod
|
79 |
-
def uninstall_model(model: torch.nn.Module):
|
80 |
-
for m in model.modules():
|
81 |
-
DynamicSwapInstaller._uninstall_module(m)
|
82 |
-
return
|
83 |
-
|
84 |
-
|
85 |
-
def fake_diffusers_current_device(model: torch.nn.Module, target_device):
|
86 |
-
# 转换字符串设备为torch.device
|
87 |
-
if isinstance(target_device, str):
|
88 |
-
target_device = torch.device(target_device)
|
89 |
-
|
90 |
-
if hasattr(model, 'scale_shift_table'):
|
91 |
-
model.scale_shift_table.data = model.scale_shift_table.data.to(target_device)
|
92 |
-
return
|
93 |
-
|
94 |
-
for k, p in model.named_modules():
|
95 |
-
if hasattr(p, 'weight'):
|
96 |
-
p.to(target_device)
|
97 |
-
return
|
98 |
-
|
99 |
-
|
100 |
-
def get_cuda_free_memory_gb(device=None):
|
101 |
-
if device is None:
|
102 |
-
device = gpu
|
103 |
-
|
104 |
-
# 如果是字符串,转换为设备
|
105 |
-
if isinstance(device, str):
|
106 |
-
device = torch.device(device)
|
107 |
-
|
108 |
-
# 如果不是CUDA设备,返回默认值
|
109 |
-
if device.type != 'cuda':
|
110 |
-
print("无法获取非CUDA设备的内存信息,返回默认值")
|
111 |
-
return 6.0 # 返回一个默认值
|
112 |
-
|
113 |
-
try:
|
114 |
-
memory_stats = torch.cuda.memory_stats(device)
|
115 |
-
bytes_active = memory_stats['active_bytes.all.current']
|
116 |
-
bytes_reserved = memory_stats['reserved_bytes.all.current']
|
117 |
-
bytes_free_cuda, _ = torch.cuda.mem_get_info(device)
|
118 |
-
bytes_inactive_reserved = bytes_reserved - bytes_active
|
119 |
-
bytes_total_available = bytes_free_cuda + bytes_inactive_reserved
|
120 |
-
return bytes_total_available / (1024 ** 3)
|
121 |
-
except Exception as e:
|
122 |
-
print(f"获取CUDA内存信息时出错: {e}")
|
123 |
-
return 6.0 # 返回一个默认值
|
124 |
-
|
125 |
-
|
126 |
-
def move_model_to_device_with_memory_preservation(model, target_device, preserved_memory_gb=0):
|
127 |
-
print(f'Moving {model.__class__.__name__} to {target_device} with preserved memory: {preserved_memory_gb} GB')
|
128 |
-
|
129 |
-
# 如果是字符串,转换为设备
|
130 |
-
if isinstance(target_device, str):
|
131 |
-
target_device = torch.device(target_device)
|
132 |
-
|
133 |
-
# 如果gpu是字符串,转换为设备
|
134 |
-
gpu_device = gpu
|
135 |
-
if isinstance(gpu_device, str):
|
136 |
-
gpu_device = torch.device(gpu_device)
|
137 |
-
|
138 |
-
# 如果目标设备是CPU或当前在CPU上,直接移动
|
139 |
-
if target_device.type == 'cpu' or gpu_device.type == 'cpu':
|
140 |
-
model.to(device=target_device)
|
141 |
-
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
142 |
-
return
|
143 |
-
|
144 |
-
for m in model.modules():
|
145 |
-
if get_cuda_free_memory_gb(target_device) <= preserved_memory_gb:
|
146 |
-
torch.cuda.empty_cache()
|
147 |
-
return
|
148 |
-
|
149 |
-
if hasattr(m, 'weight'):
|
150 |
-
m.to(device=target_device)
|
151 |
-
|
152 |
-
model.to(device=target_device)
|
153 |
-
torch.cuda.empty_cache()
|
154 |
-
return
|
155 |
-
|
156 |
-
|
157 |
-
def offload_model_from_device_for_memory_preservation(model, target_device, preserved_memory_gb=0):
|
158 |
-
print(f'Offloading {model.__class__.__name__} from {target_device} to preserve memory: {preserved_memory_gb} GB')
|
159 |
-
|
160 |
-
# 如果是字符串,转换为设备
|
161 |
-
if isinstance(target_device, str):
|
162 |
-
target_device = torch.device(target_device)
|
163 |
-
|
164 |
-
# 如果gpu是字符串,转换为设备
|
165 |
-
gpu_device = gpu
|
166 |
-
if isinstance(gpu_device, str):
|
167 |
-
gpu_device = torch.device(gpu_device)
|
168 |
-
|
169 |
-
# 如果目标设备是CPU或当前在CPU上,直接处理
|
170 |
-
if target_device.type == 'cpu' or gpu_device.type == 'cpu':
|
171 |
-
model.to(device=cpu)
|
172 |
-
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
173 |
-
return
|
174 |
-
|
175 |
-
for m in model.modules():
|
176 |
-
if get_cuda_free_memory_gb(target_device) >= preserved_memory_gb:
|
177 |
-
torch.cuda.empty_cache()
|
178 |
-
return
|
179 |
-
|
180 |
-
if hasattr(m, 'weight'):
|
181 |
-
m.to(device=cpu)
|
182 |
-
|
183 |
-
model.to(device=cpu)
|
184 |
-
torch.cuda.empty_cache()
|
185 |
-
return
|
186 |
-
|
187 |
-
|
188 |
-
def unload_complete_models(*args):
|
189 |
-
for m in gpu_complete_modules + list(args):
|
190 |
-
m.to(device=cpu)
|
191 |
-
print(f'Unloaded {m.__class__.__name__} as complete.')
|
192 |
-
|
193 |
-
gpu_complete_modules.clear()
|
194 |
-
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
195 |
-
return
|
196 |
-
|
197 |
-
|
198 |
-
def load_model_as_complete(model, target_device, unload=True):
|
199 |
-
# 如果是字符串,转换为设备
|
200 |
-
if isinstance(target_device, str):
|
201 |
-
target_device = torch.device(target_device)
|
202 |
-
|
203 |
-
if unload:
|
204 |
-
unload_complete_models()
|
205 |
-
|
206 |
-
model.to(device=target_device)
|
207 |
-
print(f'Loaded {model.__class__.__name__} to {target_device} as complete.')
|
208 |
-
|
209 |
-
gpu_complete_modules.append(model)
|
210 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusers_helper/models/hunyuan_video_packed.py
DELETED
@@ -1,1032 +0,0 @@
|
|
1 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import einops
|
5 |
-
import torch.nn as nn
|
6 |
-
import numpy as np
|
7 |
-
|
8 |
-
from diffusers.loaders import FromOriginalModelMixin
|
9 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
10 |
-
from diffusers.loaders import PeftAdapterMixin
|
11 |
-
from diffusers.utils import logging
|
12 |
-
from diffusers.models.attention import FeedForward
|
13 |
-
from diffusers.models.attention_processor import Attention
|
14 |
-
from diffusers.models.embeddings import TimestepEmbedding, Timesteps, PixArtAlphaTextProjection
|
15 |
-
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
16 |
-
from diffusers.models.modeling_utils import ModelMixin
|
17 |
-
from diffusers_helper.dit_common import LayerNorm
|
18 |
-
from diffusers_helper.utils import zero_module
|
19 |
-
|
20 |
-
|
21 |
-
enabled_backends = []
|
22 |
-
|
23 |
-
if torch.backends.cuda.flash_sdp_enabled():
|
24 |
-
enabled_backends.append("flash")
|
25 |
-
if torch.backends.cuda.math_sdp_enabled():
|
26 |
-
enabled_backends.append("math")
|
27 |
-
if torch.backends.cuda.mem_efficient_sdp_enabled():
|
28 |
-
enabled_backends.append("mem_efficient")
|
29 |
-
if torch.backends.cuda.cudnn_sdp_enabled():
|
30 |
-
enabled_backends.append("cudnn")
|
31 |
-
|
32 |
-
print("Currently enabled native sdp backends:", enabled_backends)
|
33 |
-
|
34 |
-
try:
|
35 |
-
# raise NotImplementedError
|
36 |
-
from xformers.ops import memory_efficient_attention as xformers_attn_func
|
37 |
-
print('Xformers is installed!')
|
38 |
-
except:
|
39 |
-
print('Xformers is not installed!')
|
40 |
-
xformers_attn_func = None
|
41 |
-
|
42 |
-
try:
|
43 |
-
# raise NotImplementedError
|
44 |
-
from flash_attn import flash_attn_varlen_func, flash_attn_func
|
45 |
-
print('Flash Attn is installed!')
|
46 |
-
except:
|
47 |
-
print('Flash Attn is not installed!')
|
48 |
-
flash_attn_varlen_func = None
|
49 |
-
flash_attn_func = None
|
50 |
-
|
51 |
-
try:
|
52 |
-
# raise NotImplementedError
|
53 |
-
from sageattention import sageattn_varlen, sageattn
|
54 |
-
print('Sage Attn is installed!')
|
55 |
-
except:
|
56 |
-
print('Sage Attn is not installed!')
|
57 |
-
sageattn_varlen = None
|
58 |
-
sageattn = None
|
59 |
-
|
60 |
-
|
61 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
62 |
-
|
63 |
-
|
64 |
-
def pad_for_3d_conv(x, kernel_size):
|
65 |
-
b, c, t, h, w = x.shape
|
66 |
-
pt, ph, pw = kernel_size
|
67 |
-
pad_t = (pt - (t % pt)) % pt
|
68 |
-
pad_h = (ph - (h % ph)) % ph
|
69 |
-
pad_w = (pw - (w % pw)) % pw
|
70 |
-
return torch.nn.functional.pad(x, (0, pad_w, 0, pad_h, 0, pad_t), mode='replicate')
|
71 |
-
|
72 |
-
|
73 |
-
def center_down_sample_3d(x, kernel_size):
|
74 |
-
# pt, ph, pw = kernel_size
|
75 |
-
# cp = (pt * ph * pw) // 2
|
76 |
-
# xp = einops.rearrange(x, 'b c (t pt) (h ph) (w pw) -> (pt ph pw) b c t h w', pt=pt, ph=ph, pw=pw)
|
77 |
-
# xc = xp[cp]
|
78 |
-
# return xc
|
79 |
-
return torch.nn.functional.avg_pool3d(x, kernel_size, stride=kernel_size)
|
80 |
-
|
81 |
-
|
82 |
-
def get_cu_seqlens(text_mask, img_len):
|
83 |
-
batch_size = text_mask.shape[0]
|
84 |
-
text_len = text_mask.sum(dim=1)
|
85 |
-
max_len = text_mask.shape[1] + img_len
|
86 |
-
|
87 |
-
cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda")
|
88 |
-
|
89 |
-
for i in range(batch_size):
|
90 |
-
s = text_len[i] + img_len
|
91 |
-
s1 = i * max_len + s
|
92 |
-
s2 = (i + 1) * max_len
|
93 |
-
cu_seqlens[2 * i + 1] = s1
|
94 |
-
cu_seqlens[2 * i + 2] = s2
|
95 |
-
|
96 |
-
return cu_seqlens
|
97 |
-
|
98 |
-
|
99 |
-
def apply_rotary_emb_transposed(x, freqs_cis):
|
100 |
-
cos, sin = freqs_cis.unsqueeze(-2).chunk(2, dim=-1)
|
101 |
-
x_real, x_imag = x.unflatten(-1, (-1, 2)).unbind(-1)
|
102 |
-
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
103 |
-
out = x.float() * cos + x_rotated.float() * sin
|
104 |
-
out = out.to(x)
|
105 |
-
return out
|
106 |
-
|
107 |
-
|
108 |
-
def attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv):
|
109 |
-
if cu_seqlens_q is None and cu_seqlens_kv is None and max_seqlen_q is None and max_seqlen_kv is None:
|
110 |
-
if sageattn is not None:
|
111 |
-
x = sageattn(q, k, v, tensor_layout='NHD')
|
112 |
-
return x
|
113 |
-
|
114 |
-
if flash_attn_func is not None:
|
115 |
-
x = flash_attn_func(q, k, v)
|
116 |
-
return x
|
117 |
-
|
118 |
-
if xformers_attn_func is not None:
|
119 |
-
x = xformers_attn_func(q, k, v)
|
120 |
-
return x
|
121 |
-
|
122 |
-
x = torch.nn.functional.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)).transpose(1, 2)
|
123 |
-
return x
|
124 |
-
|
125 |
-
batch_size = q.shape[0]
|
126 |
-
q = q.view(q.shape[0] * q.shape[1], *q.shape[2:])
|
127 |
-
k = k.view(k.shape[0] * k.shape[1], *k.shape[2:])
|
128 |
-
v = v.view(v.shape[0] * v.shape[1], *v.shape[2:])
|
129 |
-
if sageattn_varlen is not None:
|
130 |
-
x = sageattn_varlen(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
131 |
-
elif flash_attn_varlen_func is not None:
|
132 |
-
x = flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
133 |
-
else:
|
134 |
-
raise NotImplementedError('No Attn Installed!')
|
135 |
-
x = x.view(batch_size, max_seqlen_q, *x.shape[2:])
|
136 |
-
return x
|
137 |
-
|
138 |
-
|
139 |
-
class HunyuanAttnProcessorFlashAttnDouble:
|
140 |
-
def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
|
141 |
-
cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
|
142 |
-
|
143 |
-
query = attn.to_q(hidden_states)
|
144 |
-
key = attn.to_k(hidden_states)
|
145 |
-
value = attn.to_v(hidden_states)
|
146 |
-
|
147 |
-
query = query.unflatten(2, (attn.heads, -1))
|
148 |
-
key = key.unflatten(2, (attn.heads, -1))
|
149 |
-
value = value.unflatten(2, (attn.heads, -1))
|
150 |
-
|
151 |
-
query = attn.norm_q(query)
|
152 |
-
key = attn.norm_k(key)
|
153 |
-
|
154 |
-
query = apply_rotary_emb_transposed(query, image_rotary_emb)
|
155 |
-
key = apply_rotary_emb_transposed(key, image_rotary_emb)
|
156 |
-
|
157 |
-
encoder_query = attn.add_q_proj(encoder_hidden_states)
|
158 |
-
encoder_key = attn.add_k_proj(encoder_hidden_states)
|
159 |
-
encoder_value = attn.add_v_proj(encoder_hidden_states)
|
160 |
-
|
161 |
-
encoder_query = encoder_query.unflatten(2, (attn.heads, -1))
|
162 |
-
encoder_key = encoder_key.unflatten(2, (attn.heads, -1))
|
163 |
-
encoder_value = encoder_value.unflatten(2, (attn.heads, -1))
|
164 |
-
|
165 |
-
encoder_query = attn.norm_added_q(encoder_query)
|
166 |
-
encoder_key = attn.norm_added_k(encoder_key)
|
167 |
-
|
168 |
-
query = torch.cat([query, encoder_query], dim=1)
|
169 |
-
key = torch.cat([key, encoder_key], dim=1)
|
170 |
-
value = torch.cat([value, encoder_value], dim=1)
|
171 |
-
|
172 |
-
hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
173 |
-
hidden_states = hidden_states.flatten(-2)
|
174 |
-
|
175 |
-
txt_length = encoder_hidden_states.shape[1]
|
176 |
-
hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
|
177 |
-
|
178 |
-
hidden_states = attn.to_out[0](hidden_states)
|
179 |
-
hidden_states = attn.to_out[1](hidden_states)
|
180 |
-
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
181 |
-
|
182 |
-
return hidden_states, encoder_hidden_states
|
183 |
-
|
184 |
-
|
185 |
-
class HunyuanAttnProcessorFlashAttnSingle:
|
186 |
-
def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
|
187 |
-
cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
|
188 |
-
|
189 |
-
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
190 |
-
|
191 |
-
query = attn.to_q(hidden_states)
|
192 |
-
key = attn.to_k(hidden_states)
|
193 |
-
value = attn.to_v(hidden_states)
|
194 |
-
|
195 |
-
query = query.unflatten(2, (attn.heads, -1))
|
196 |
-
key = key.unflatten(2, (attn.heads, -1))
|
197 |
-
value = value.unflatten(2, (attn.heads, -1))
|
198 |
-
|
199 |
-
query = attn.norm_q(query)
|
200 |
-
key = attn.norm_k(key)
|
201 |
-
|
202 |
-
txt_length = encoder_hidden_states.shape[1]
|
203 |
-
|
204 |
-
query = torch.cat([apply_rotary_emb_transposed(query[:, :-txt_length], image_rotary_emb), query[:, -txt_length:]], dim=1)
|
205 |
-
key = torch.cat([apply_rotary_emb_transposed(key[:, :-txt_length], image_rotary_emb), key[:, -txt_length:]], dim=1)
|
206 |
-
|
207 |
-
hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
208 |
-
hidden_states = hidden_states.flatten(-2)
|
209 |
-
|
210 |
-
hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
|
211 |
-
|
212 |
-
return hidden_states, encoder_hidden_states
|
213 |
-
|
214 |
-
|
215 |
-
class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module):
|
216 |
-
def __init__(self, embedding_dim, pooled_projection_dim):
|
217 |
-
super().__init__()
|
218 |
-
|
219 |
-
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
220 |
-
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
221 |
-
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
222 |
-
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
|
223 |
-
|
224 |
-
def forward(self, timestep, guidance, pooled_projection):
|
225 |
-
timesteps_proj = self.time_proj(timestep)
|
226 |
-
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
|
227 |
-
|
228 |
-
guidance_proj = self.time_proj(guidance)
|
229 |
-
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype))
|
230 |
-
|
231 |
-
time_guidance_emb = timesteps_emb + guidance_emb
|
232 |
-
|
233 |
-
pooled_projections = self.text_embedder(pooled_projection)
|
234 |
-
conditioning = time_guidance_emb + pooled_projections
|
235 |
-
|
236 |
-
return conditioning
|
237 |
-
|
238 |
-
|
239 |
-
class CombinedTimestepTextProjEmbeddings(nn.Module):
|
240 |
-
def __init__(self, embedding_dim, pooled_projection_dim):
|
241 |
-
super().__init__()
|
242 |
-
|
243 |
-
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
244 |
-
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
245 |
-
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
|
246 |
-
|
247 |
-
def forward(self, timestep, pooled_projection):
|
248 |
-
timesteps_proj = self.time_proj(timestep)
|
249 |
-
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
|
250 |
-
|
251 |
-
pooled_projections = self.text_embedder(pooled_projection)
|
252 |
-
|
253 |
-
conditioning = timesteps_emb + pooled_projections
|
254 |
-
|
255 |
-
return conditioning
|
256 |
-
|
257 |
-
|
258 |
-
class HunyuanVideoAdaNorm(nn.Module):
|
259 |
-
def __init__(self, in_features: int, out_features: Optional[int] = None) -> None:
|
260 |
-
super().__init__()
|
261 |
-
|
262 |
-
out_features = out_features or 2 * in_features
|
263 |
-
self.linear = nn.Linear(in_features, out_features)
|
264 |
-
self.nonlinearity = nn.SiLU()
|
265 |
-
|
266 |
-
def forward(
|
267 |
-
self, temb: torch.Tensor
|
268 |
-
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
269 |
-
temb = self.linear(self.nonlinearity(temb))
|
270 |
-
gate_msa, gate_mlp = temb.chunk(2, dim=-1)
|
271 |
-
gate_msa, gate_mlp = gate_msa.unsqueeze(1), gate_mlp.unsqueeze(1)
|
272 |
-
return gate_msa, gate_mlp
|
273 |
-
|
274 |
-
|
275 |
-
class HunyuanVideoIndividualTokenRefinerBlock(nn.Module):
|
276 |
-
def __init__(
|
277 |
-
self,
|
278 |
-
num_attention_heads: int,
|
279 |
-
attention_head_dim: int,
|
280 |
-
mlp_width_ratio: str = 4.0,
|
281 |
-
mlp_drop_rate: float = 0.0,
|
282 |
-
attention_bias: bool = True,
|
283 |
-
) -> None:
|
284 |
-
super().__init__()
|
285 |
-
|
286 |
-
hidden_size = num_attention_heads * attention_head_dim
|
287 |
-
|
288 |
-
self.norm1 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
|
289 |
-
self.attn = Attention(
|
290 |
-
query_dim=hidden_size,
|
291 |
-
cross_attention_dim=None,
|
292 |
-
heads=num_attention_heads,
|
293 |
-
dim_head=attention_head_dim,
|
294 |
-
bias=attention_bias,
|
295 |
-
)
|
296 |
-
|
297 |
-
self.norm2 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
|
298 |
-
self.ff = FeedForward(hidden_size, mult=mlp_width_ratio, activation_fn="linear-silu", dropout=mlp_drop_rate)
|
299 |
-
|
300 |
-
self.norm_out = HunyuanVideoAdaNorm(hidden_size, 2 * hidden_size)
|
301 |
-
|
302 |
-
def forward(
|
303 |
-
self,
|
304 |
-
hidden_states: torch.Tensor,
|
305 |
-
temb: torch.Tensor,
|
306 |
-
attention_mask: Optional[torch.Tensor] = None,
|
307 |
-
) -> torch.Tensor:
|
308 |
-
norm_hidden_states = self.norm1(hidden_states)
|
309 |
-
|
310 |
-
attn_output = self.attn(
|
311 |
-
hidden_states=norm_hidden_states,
|
312 |
-
encoder_hidden_states=None,
|
313 |
-
attention_mask=attention_mask,
|
314 |
-
)
|
315 |
-
|
316 |
-
gate_msa, gate_mlp = self.norm_out(temb)
|
317 |
-
hidden_states = hidden_states + attn_output * gate_msa
|
318 |
-
|
319 |
-
ff_output = self.ff(self.norm2(hidden_states))
|
320 |
-
hidden_states = hidden_states + ff_output * gate_mlp
|
321 |
-
|
322 |
-
return hidden_states
|
323 |
-
|
324 |
-
|
325 |
-
class HunyuanVideoIndividualTokenRefiner(nn.Module):
|
326 |
-
def __init__(
|
327 |
-
self,
|
328 |
-
num_attention_heads: int,
|
329 |
-
attention_head_dim: int,
|
330 |
-
num_layers: int,
|
331 |
-
mlp_width_ratio: float = 4.0,
|
332 |
-
mlp_drop_rate: float = 0.0,
|
333 |
-
attention_bias: bool = True,
|
334 |
-
) -> None:
|
335 |
-
super().__init__()
|
336 |
-
|
337 |
-
self.refiner_blocks = nn.ModuleList(
|
338 |
-
[
|
339 |
-
HunyuanVideoIndividualTokenRefinerBlock(
|
340 |
-
num_attention_heads=num_attention_heads,
|
341 |
-
attention_head_dim=attention_head_dim,
|
342 |
-
mlp_width_ratio=mlp_width_ratio,
|
343 |
-
mlp_drop_rate=mlp_drop_rate,
|
344 |
-
attention_bias=attention_bias,
|
345 |
-
)
|
346 |
-
for _ in range(num_layers)
|
347 |
-
]
|
348 |
-
)
|
349 |
-
|
350 |
-
def forward(
|
351 |
-
self,
|
352 |
-
hidden_states: torch.Tensor,
|
353 |
-
temb: torch.Tensor,
|
354 |
-
attention_mask: Optional[torch.Tensor] = None,
|
355 |
-
) -> None:
|
356 |
-
self_attn_mask = None
|
357 |
-
if attention_mask is not None:
|
358 |
-
batch_size = attention_mask.shape[0]
|
359 |
-
seq_len = attention_mask.shape[1]
|
360 |
-
attention_mask = attention_mask.to(hidden_states.device).bool()
|
361 |
-
self_attn_mask_1 = attention_mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1)
|
362 |
-
self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
|
363 |
-
self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
|
364 |
-
self_attn_mask[:, :, :, 0] = True
|
365 |
-
|
366 |
-
for block in self.refiner_blocks:
|
367 |
-
hidden_states = block(hidden_states, temb, self_attn_mask)
|
368 |
-
|
369 |
-
return hidden_states
|
370 |
-
|
371 |
-
|
372 |
-
class HunyuanVideoTokenRefiner(nn.Module):
|
373 |
-
def __init__(
|
374 |
-
self,
|
375 |
-
in_channels: int,
|
376 |
-
num_attention_heads: int,
|
377 |
-
attention_head_dim: int,
|
378 |
-
num_layers: int,
|
379 |
-
mlp_ratio: float = 4.0,
|
380 |
-
mlp_drop_rate: float = 0.0,
|
381 |
-
attention_bias: bool = True,
|
382 |
-
) -> None:
|
383 |
-
super().__init__()
|
384 |
-
|
385 |
-
hidden_size = num_attention_heads * attention_head_dim
|
386 |
-
|
387 |
-
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
|
388 |
-
embedding_dim=hidden_size, pooled_projection_dim=in_channels
|
389 |
-
)
|
390 |
-
self.proj_in = nn.Linear(in_channels, hidden_size, bias=True)
|
391 |
-
self.token_refiner = HunyuanVideoIndividualTokenRefiner(
|
392 |
-
num_attention_heads=num_attention_heads,
|
393 |
-
attention_head_dim=attention_head_dim,
|
394 |
-
num_layers=num_layers,
|
395 |
-
mlp_width_ratio=mlp_ratio,
|
396 |
-
mlp_drop_rate=mlp_drop_rate,
|
397 |
-
attention_bias=attention_bias,
|
398 |
-
)
|
399 |
-
|
400 |
-
def forward(
|
401 |
-
self,
|
402 |
-
hidden_states: torch.Tensor,
|
403 |
-
timestep: torch.LongTensor,
|
404 |
-
attention_mask: Optional[torch.LongTensor] = None,
|
405 |
-
) -> torch.Tensor:
|
406 |
-
if attention_mask is None:
|
407 |
-
pooled_projections = hidden_states.mean(dim=1)
|
408 |
-
else:
|
409 |
-
original_dtype = hidden_states.dtype
|
410 |
-
mask_float = attention_mask.float().unsqueeze(-1)
|
411 |
-
pooled_projections = (hidden_states * mask_float).sum(dim=1) / mask_float.sum(dim=1)
|
412 |
-
pooled_projections = pooled_projections.to(original_dtype)
|
413 |
-
|
414 |
-
temb = self.time_text_embed(timestep, pooled_projections)
|
415 |
-
hidden_states = self.proj_in(hidden_states)
|
416 |
-
hidden_states = self.token_refiner(hidden_states, temb, attention_mask)
|
417 |
-
|
418 |
-
return hidden_states
|
419 |
-
|
420 |
-
|
421 |
-
class HunyuanVideoRotaryPosEmbed(nn.Module):
|
422 |
-
def __init__(self, rope_dim, theta):
|
423 |
-
super().__init__()
|
424 |
-
self.DT, self.DY, self.DX = rope_dim
|
425 |
-
self.theta = theta
|
426 |
-
|
427 |
-
@torch.no_grad()
|
428 |
-
def get_frequency(self, dim, pos):
|
429 |
-
T, H, W = pos.shape
|
430 |
-
freqs = 1.0 / (self.theta ** (torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device)[: (dim // 2)] / dim))
|
431 |
-
freqs = torch.outer(freqs, pos.reshape(-1)).unflatten(-1, (T, H, W)).repeat_interleave(2, dim=0)
|
432 |
-
return freqs.cos(), freqs.sin()
|
433 |
-
|
434 |
-
@torch.no_grad()
|
435 |
-
def forward_inner(self, frame_indices, height, width, device):
|
436 |
-
GT, GY, GX = torch.meshgrid(
|
437 |
-
frame_indices.to(device=device, dtype=torch.float32),
|
438 |
-
torch.arange(0, height, device=device, dtype=torch.float32),
|
439 |
-
torch.arange(0, width, device=device, dtype=torch.float32),
|
440 |
-
indexing="ij"
|
441 |
-
)
|
442 |
-
|
443 |
-
FCT, FST = self.get_frequency(self.DT, GT)
|
444 |
-
FCY, FSY = self.get_frequency(self.DY, GY)
|
445 |
-
FCX, FSX = self.get_frequency(self.DX, GX)
|
446 |
-
|
447 |
-
result = torch.cat([FCT, FCY, FCX, FST, FSY, FSX], dim=0)
|
448 |
-
|
449 |
-
return result.to(device)
|
450 |
-
|
451 |
-
@torch.no_grad()
|
452 |
-
def forward(self, frame_indices, height, width, device):
|
453 |
-
frame_indices = frame_indices.unbind(0)
|
454 |
-
results = [self.forward_inner(f, height, width, device) for f in frame_indices]
|
455 |
-
results = torch.stack(results, dim=0)
|
456 |
-
return results
|
457 |
-
|
458 |
-
|
459 |
-
class AdaLayerNormZero(nn.Module):
|
460 |
-
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
|
461 |
-
super().__init__()
|
462 |
-
self.silu = nn.SiLU()
|
463 |
-
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias)
|
464 |
-
if norm_type == "layer_norm":
|
465 |
-
self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
466 |
-
else:
|
467 |
-
raise ValueError(f"unknown norm_type {norm_type}")
|
468 |
-
|
469 |
-
def forward(
|
470 |
-
self,
|
471 |
-
x: torch.Tensor,
|
472 |
-
emb: Optional[torch.Tensor] = None,
|
473 |
-
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
474 |
-
emb = emb.unsqueeze(-2)
|
475 |
-
emb = self.linear(self.silu(emb))
|
476 |
-
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1)
|
477 |
-
x = self.norm(x) * (1 + scale_msa) + shift_msa
|
478 |
-
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
479 |
-
|
480 |
-
|
481 |
-
class AdaLayerNormZeroSingle(nn.Module):
|
482 |
-
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
|
483 |
-
super().__init__()
|
484 |
-
|
485 |
-
self.silu = nn.SiLU()
|
486 |
-
self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias)
|
487 |
-
if norm_type == "layer_norm":
|
488 |
-
self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
489 |
-
else:
|
490 |
-
raise ValueError(f"unknown norm_type {norm_type}")
|
491 |
-
|
492 |
-
def forward(
|
493 |
-
self,
|
494 |
-
x: torch.Tensor,
|
495 |
-
emb: Optional[torch.Tensor] = None,
|
496 |
-
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
497 |
-
emb = emb.unsqueeze(-2)
|
498 |
-
emb = self.linear(self.silu(emb))
|
499 |
-
shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=-1)
|
500 |
-
x = self.norm(x) * (1 + scale_msa) + shift_msa
|
501 |
-
return x, gate_msa
|
502 |
-
|
503 |
-
|
504 |
-
class AdaLayerNormContinuous(nn.Module):
|
505 |
-
def __init__(
|
506 |
-
self,
|
507 |
-
embedding_dim: int,
|
508 |
-
conditioning_embedding_dim: int,
|
509 |
-
elementwise_affine=True,
|
510 |
-
eps=1e-5,
|
511 |
-
bias=True,
|
512 |
-
norm_type="layer_norm",
|
513 |
-
):
|
514 |
-
super().__init__()
|
515 |
-
self.silu = nn.SiLU()
|
516 |
-
self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias)
|
517 |
-
if norm_type == "layer_norm":
|
518 |
-
self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias)
|
519 |
-
else:
|
520 |
-
raise ValueError(f"unknown norm_type {norm_type}")
|
521 |
-
|
522 |
-
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
|
523 |
-
emb = emb.unsqueeze(-2)
|
524 |
-
emb = self.linear(self.silu(emb))
|
525 |
-
scale, shift = emb.chunk(2, dim=-1)
|
526 |
-
x = self.norm(x) * (1 + scale) + shift
|
527 |
-
return x
|
528 |
-
|
529 |
-
|
530 |
-
class HunyuanVideoSingleTransformerBlock(nn.Module):
|
531 |
-
def __init__(
|
532 |
-
self,
|
533 |
-
num_attention_heads: int,
|
534 |
-
attention_head_dim: int,
|
535 |
-
mlp_ratio: float = 4.0,
|
536 |
-
qk_norm: str = "rms_norm",
|
537 |
-
) -> None:
|
538 |
-
super().__init__()
|
539 |
-
|
540 |
-
hidden_size = num_attention_heads * attention_head_dim
|
541 |
-
mlp_dim = int(hidden_size * mlp_ratio)
|
542 |
-
|
543 |
-
self.attn = Attention(
|
544 |
-
query_dim=hidden_size,
|
545 |
-
cross_attention_dim=None,
|
546 |
-
dim_head=attention_head_dim,
|
547 |
-
heads=num_attention_heads,
|
548 |
-
out_dim=hidden_size,
|
549 |
-
bias=True,
|
550 |
-
processor=HunyuanAttnProcessorFlashAttnSingle(),
|
551 |
-
qk_norm=qk_norm,
|
552 |
-
eps=1e-6,
|
553 |
-
pre_only=True,
|
554 |
-
)
|
555 |
-
|
556 |
-
self.norm = AdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm")
|
557 |
-
self.proj_mlp = nn.Linear(hidden_size, mlp_dim)
|
558 |
-
self.act_mlp = nn.GELU(approximate="tanh")
|
559 |
-
self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size)
|
560 |
-
|
561 |
-
def forward(
|
562 |
-
self,
|
563 |
-
hidden_states: torch.Tensor,
|
564 |
-
encoder_hidden_states: torch.Tensor,
|
565 |
-
temb: torch.Tensor,
|
566 |
-
attention_mask: Optional[torch.Tensor] = None,
|
567 |
-
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
568 |
-
) -> torch.Tensor:
|
569 |
-
text_seq_length = encoder_hidden_states.shape[1]
|
570 |
-
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
571 |
-
|
572 |
-
residual = hidden_states
|
573 |
-
|
574 |
-
# 1. Input normalization
|
575 |
-
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
576 |
-
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
577 |
-
|
578 |
-
norm_hidden_states, norm_encoder_hidden_states = (
|
579 |
-
norm_hidden_states[:, :-text_seq_length, :],
|
580 |
-
norm_hidden_states[:, -text_seq_length:, :],
|
581 |
-
)
|
582 |
-
|
583 |
-
# 2. Attention
|
584 |
-
attn_output, context_attn_output = self.attn(
|
585 |
-
hidden_states=norm_hidden_states,
|
586 |
-
encoder_hidden_states=norm_encoder_hidden_states,
|
587 |
-
attention_mask=attention_mask,
|
588 |
-
image_rotary_emb=image_rotary_emb,
|
589 |
-
)
|
590 |
-
attn_output = torch.cat([attn_output, context_attn_output], dim=1)
|
591 |
-
|
592 |
-
# 3. Modulation and residual connection
|
593 |
-
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
594 |
-
hidden_states = gate * self.proj_out(hidden_states)
|
595 |
-
hidden_states = hidden_states + residual
|
596 |
-
|
597 |
-
hidden_states, encoder_hidden_states = (
|
598 |
-
hidden_states[:, :-text_seq_length, :],
|
599 |
-
hidden_states[:, -text_seq_length:, :],
|
600 |
-
)
|
601 |
-
return hidden_states, encoder_hidden_states
|
602 |
-
|
603 |
-
|
604 |
-
class HunyuanVideoTransformerBlock(nn.Module):
|
605 |
-
def __init__(
|
606 |
-
self,
|
607 |
-
num_attention_heads: int,
|
608 |
-
attention_head_dim: int,
|
609 |
-
mlp_ratio: float,
|
610 |
-
qk_norm: str = "rms_norm",
|
611 |
-
) -> None:
|
612 |
-
super().__init__()
|
613 |
-
|
614 |
-
hidden_size = num_attention_heads * attention_head_dim
|
615 |
-
|
616 |
-
self.norm1 = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
|
617 |
-
self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
|
618 |
-
|
619 |
-
self.attn = Attention(
|
620 |
-
query_dim=hidden_size,
|
621 |
-
cross_attention_dim=None,
|
622 |
-
added_kv_proj_dim=hidden_size,
|
623 |
-
dim_head=attention_head_dim,
|
624 |
-
heads=num_attention_heads,
|
625 |
-
out_dim=hidden_size,
|
626 |
-
context_pre_only=False,
|
627 |
-
bias=True,
|
628 |
-
processor=HunyuanAttnProcessorFlashAttnDouble(),
|
629 |
-
qk_norm=qk_norm,
|
630 |
-
eps=1e-6,
|
631 |
-
)
|
632 |
-
|
633 |
-
self.norm2 = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
634 |
-
self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
|
635 |
-
|
636 |
-
self.norm2_context = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
637 |
-
self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
|
638 |
-
|
639 |
-
def forward(
|
640 |
-
self,
|
641 |
-
hidden_states: torch.Tensor,
|
642 |
-
encoder_hidden_states: torch.Tensor,
|
643 |
-
temb: torch.Tensor,
|
644 |
-
attention_mask: Optional[torch.Tensor] = None,
|
645 |
-
freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
646 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
647 |
-
# 1. Input normalization
|
648 |
-
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
649 |
-
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(encoder_hidden_states, emb=temb)
|
650 |
-
|
651 |
-
# 2. Joint attention
|
652 |
-
attn_output, context_attn_output = self.attn(
|
653 |
-
hidden_states=norm_hidden_states,
|
654 |
-
encoder_hidden_states=norm_encoder_hidden_states,
|
655 |
-
attention_mask=attention_mask,
|
656 |
-
image_rotary_emb=freqs_cis,
|
657 |
-
)
|
658 |
-
|
659 |
-
# 3. Modulation and residual connection
|
660 |
-
hidden_states = hidden_states + attn_output * gate_msa
|
661 |
-
encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa
|
662 |
-
|
663 |
-
norm_hidden_states = self.norm2(hidden_states)
|
664 |
-
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
665 |
-
|
666 |
-
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
667 |
-
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp) + c_shift_mlp
|
668 |
-
|
669 |
-
# 4. Feed-forward
|
670 |
-
ff_output = self.ff(norm_hidden_states)
|
671 |
-
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
672 |
-
|
673 |
-
hidden_states = hidden_states + gate_mlp * ff_output
|
674 |
-
encoder_hidden_states = encoder_hidden_states + c_gate_mlp * context_ff_output
|
675 |
-
|
676 |
-
return hidden_states, encoder_hidden_states
|
677 |
-
|
678 |
-
|
679 |
-
class ClipVisionProjection(nn.Module):
|
680 |
-
def __init__(self, in_channels, out_channels):
|
681 |
-
super().__init__()
|
682 |
-
self.up = nn.Linear(in_channels, out_channels * 3)
|
683 |
-
self.down = nn.Linear(out_channels * 3, out_channels)
|
684 |
-
|
685 |
-
def forward(self, x):
|
686 |
-
projected_x = self.down(nn.functional.silu(self.up(x)))
|
687 |
-
return projected_x
|
688 |
-
|
689 |
-
|
690 |
-
class HunyuanVideoPatchEmbed(nn.Module):
|
691 |
-
def __init__(self, patch_size, in_chans, embed_dim):
|
692 |
-
super().__init__()
|
693 |
-
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
694 |
-
|
695 |
-
|
696 |
-
class HunyuanVideoPatchEmbedForCleanLatents(nn.Module):
|
697 |
-
def __init__(self, inner_dim):
|
698 |
-
super().__init__()
|
699 |
-
self.proj = nn.Conv3d(16, inner_dim, kernel_size=(1, 2, 2), stride=(1, 2, 2))
|
700 |
-
self.proj_2x = nn.Conv3d(16, inner_dim, kernel_size=(2, 4, 4), stride=(2, 4, 4))
|
701 |
-
self.proj_4x = nn.Conv3d(16, inner_dim, kernel_size=(4, 8, 8), stride=(4, 8, 8))
|
702 |
-
|
703 |
-
@torch.no_grad()
|
704 |
-
def initialize_weight_from_another_conv3d(self, another_layer):
|
705 |
-
weight = another_layer.weight.detach().clone()
|
706 |
-
bias = another_layer.bias.detach().clone()
|
707 |
-
|
708 |
-
sd = {
|
709 |
-
'proj.weight': weight.clone(),
|
710 |
-
'proj.bias': bias.clone(),
|
711 |
-
'proj_2x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=2, hk=2, wk=2) / 8.0,
|
712 |
-
'proj_2x.bias': bias.clone(),
|
713 |
-
'proj_4x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=4, hk=4, wk=4) / 64.0,
|
714 |
-
'proj_4x.bias': bias.clone(),
|
715 |
-
}
|
716 |
-
|
717 |
-
sd = {k: v.clone() for k, v in sd.items()}
|
718 |
-
|
719 |
-
self.load_state_dict(sd)
|
720 |
-
return
|
721 |
-
|
722 |
-
|
723 |
-
class HunyuanVideoTransformer3DModelPacked(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
724 |
-
@register_to_config
|
725 |
-
def __init__(
|
726 |
-
self,
|
727 |
-
in_channels: int = 16,
|
728 |
-
out_channels: int = 16,
|
729 |
-
num_attention_heads: int = 24,
|
730 |
-
attention_head_dim: int = 128,
|
731 |
-
num_layers: int = 20,
|
732 |
-
num_single_layers: int = 40,
|
733 |
-
num_refiner_layers: int = 2,
|
734 |
-
mlp_ratio: float = 4.0,
|
735 |
-
patch_size: int = 2,
|
736 |
-
patch_size_t: int = 1,
|
737 |
-
qk_norm: str = "rms_norm",
|
738 |
-
guidance_embeds: bool = True,
|
739 |
-
text_embed_dim: int = 4096,
|
740 |
-
pooled_projection_dim: int = 768,
|
741 |
-
rope_theta: float = 256.0,
|
742 |
-
rope_axes_dim: Tuple[int] = (16, 56, 56),
|
743 |
-
has_image_proj=False,
|
744 |
-
image_proj_dim=1152,
|
745 |
-
has_clean_x_embedder=False,
|
746 |
-
) -> None:
|
747 |
-
super().__init__()
|
748 |
-
|
749 |
-
inner_dim = num_attention_heads * attention_head_dim
|
750 |
-
out_channels = out_channels or in_channels
|
751 |
-
|
752 |
-
# 1. Latent and condition embedders
|
753 |
-
self.x_embedder = HunyuanVideoPatchEmbed((patch_size_t, patch_size, patch_size), in_channels, inner_dim)
|
754 |
-
self.context_embedder = HunyuanVideoTokenRefiner(
|
755 |
-
text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers
|
756 |
-
)
|
757 |
-
self.time_text_embed = CombinedTimestepGuidanceTextProjEmbeddings(inner_dim, pooled_projection_dim)
|
758 |
-
|
759 |
-
self.clean_x_embedder = None
|
760 |
-
self.image_projection = None
|
761 |
-
|
762 |
-
# 2. RoPE
|
763 |
-
self.rope = HunyuanVideoRotaryPosEmbed(rope_axes_dim, rope_theta)
|
764 |
-
|
765 |
-
# 3. Dual stream transformer blocks
|
766 |
-
self.transformer_blocks = nn.ModuleList(
|
767 |
-
[
|
768 |
-
HunyuanVideoTransformerBlock(
|
769 |
-
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
|
770 |
-
)
|
771 |
-
for _ in range(num_layers)
|
772 |
-
]
|
773 |
-
)
|
774 |
-
|
775 |
-
# 4. Single stream transformer blocks
|
776 |
-
self.single_transformer_blocks = nn.ModuleList(
|
777 |
-
[
|
778 |
-
HunyuanVideoSingleTransformerBlock(
|
779 |
-
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
|
780 |
-
)
|
781 |
-
for _ in range(num_single_layers)
|
782 |
-
]
|
783 |
-
)
|
784 |
-
|
785 |
-
# 5. Output projection
|
786 |
-
self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6)
|
787 |
-
self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels)
|
788 |
-
|
789 |
-
self.inner_dim = inner_dim
|
790 |
-
self.use_gradient_checkpointing = False
|
791 |
-
self.enable_teacache = False
|
792 |
-
|
793 |
-
if has_image_proj:
|
794 |
-
self.install_image_projection(image_proj_dim)
|
795 |
-
|
796 |
-
if has_clean_x_embedder:
|
797 |
-
self.install_clean_x_embedder()
|
798 |
-
|
799 |
-
self.high_quality_fp32_output_for_inference = False
|
800 |
-
|
801 |
-
def install_image_projection(self, in_channels):
|
802 |
-
self.image_projection = ClipVisionProjection(in_channels=in_channels, out_channels=self.inner_dim)
|
803 |
-
self.config['has_image_proj'] = True
|
804 |
-
self.config['image_proj_dim'] = in_channels
|
805 |
-
|
806 |
-
def install_clean_x_embedder(self):
|
807 |
-
self.clean_x_embedder = HunyuanVideoPatchEmbedForCleanLatents(self.inner_dim)
|
808 |
-
self.config['has_clean_x_embedder'] = True
|
809 |
-
|
810 |
-
def enable_gradient_checkpointing(self):
|
811 |
-
self.use_gradient_checkpointing = True
|
812 |
-
print('self.use_gradient_checkpointing = True')
|
813 |
-
|
814 |
-
def disable_gradient_checkpointing(self):
|
815 |
-
self.use_gradient_checkpointing = False
|
816 |
-
print('self.use_gradient_checkpointing = False')
|
817 |
-
|
818 |
-
def initialize_teacache(self, enable_teacache=True, num_steps=25, rel_l1_thresh=0.15):
|
819 |
-
self.enable_teacache = enable_teacache
|
820 |
-
self.cnt = 0
|
821 |
-
self.num_steps = num_steps
|
822 |
-
self.rel_l1_thresh = rel_l1_thresh # 0.1 for 1.6x speedup, 0.15 for 2.1x speedup
|
823 |
-
self.accumulated_rel_l1_distance = 0
|
824 |
-
self.previous_modulated_input = None
|
825 |
-
self.previous_residual = None
|
826 |
-
self.teacache_rescale_func = np.poly1d([7.33226126e+02, -4.01131952e+02, 6.75869174e+01, -3.14987800e+00, 9.61237896e-02])
|
827 |
-
|
828 |
-
def gradient_checkpointing_method(self, block, *args):
|
829 |
-
if self.use_gradient_checkpointing:
|
830 |
-
result = torch.utils.checkpoint.checkpoint(block, *args, use_reentrant=False)
|
831 |
-
else:
|
832 |
-
result = block(*args)
|
833 |
-
return result
|
834 |
-
|
835 |
-
def process_input_hidden_states(
|
836 |
-
self,
|
837 |
-
latents, latent_indices=None,
|
838 |
-
clean_latents=None, clean_latent_indices=None,
|
839 |
-
clean_latents_2x=None, clean_latent_2x_indices=None,
|
840 |
-
clean_latents_4x=None, clean_latent_4x_indices=None
|
841 |
-
):
|
842 |
-
hidden_states = self.gradient_checkpointing_method(self.x_embedder.proj, latents)
|
843 |
-
B, C, T, H, W = hidden_states.shape
|
844 |
-
|
845 |
-
if latent_indices is None:
|
846 |
-
latent_indices = torch.arange(0, T).unsqueeze(0).expand(B, -1)
|
847 |
-
|
848 |
-
hidden_states = hidden_states.flatten(2).transpose(1, 2)
|
849 |
-
|
850 |
-
rope_freqs = self.rope(frame_indices=latent_indices, height=H, width=W, device=hidden_states.device)
|
851 |
-
rope_freqs = rope_freqs.flatten(2).transpose(1, 2)
|
852 |
-
|
853 |
-
if clean_latents is not None and clean_latent_indices is not None:
|
854 |
-
clean_latents = clean_latents.to(hidden_states)
|
855 |
-
clean_latents = self.gradient_checkpointing_method(self.clean_x_embedder.proj, clean_latents)
|
856 |
-
clean_latents = clean_latents.flatten(2).transpose(1, 2)
|
857 |
-
|
858 |
-
clean_latent_rope_freqs = self.rope(frame_indices=clean_latent_indices, height=H, width=W, device=clean_latents.device)
|
859 |
-
clean_latent_rope_freqs = clean_latent_rope_freqs.flatten(2).transpose(1, 2)
|
860 |
-
|
861 |
-
hidden_states = torch.cat([clean_latents, hidden_states], dim=1)
|
862 |
-
rope_freqs = torch.cat([clean_latent_rope_freqs, rope_freqs], dim=1)
|
863 |
-
|
864 |
-
if clean_latents_2x is not None and clean_latent_2x_indices is not None:
|
865 |
-
clean_latents_2x = clean_latents_2x.to(hidden_states)
|
866 |
-
clean_latents_2x = pad_for_3d_conv(clean_latents_2x, (2, 4, 4))
|
867 |
-
clean_latents_2x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_2x, clean_latents_2x)
|
868 |
-
clean_latents_2x = clean_latents_2x.flatten(2).transpose(1, 2)
|
869 |
-
|
870 |
-
clean_latent_2x_rope_freqs = self.rope(frame_indices=clean_latent_2x_indices, height=H, width=W, device=clean_latents_2x.device)
|
871 |
-
clean_latent_2x_rope_freqs = pad_for_3d_conv(clean_latent_2x_rope_freqs, (2, 2, 2))
|
872 |
-
clean_latent_2x_rope_freqs = center_down_sample_3d(clean_latent_2x_rope_freqs, (2, 2, 2))
|
873 |
-
clean_latent_2x_rope_freqs = clean_latent_2x_rope_freqs.flatten(2).transpose(1, 2)
|
874 |
-
|
875 |
-
hidden_states = torch.cat([clean_latents_2x, hidden_states], dim=1)
|
876 |
-
rope_freqs = torch.cat([clean_latent_2x_rope_freqs, rope_freqs], dim=1)
|
877 |
-
|
878 |
-
if clean_latents_4x is not None and clean_latent_4x_indices is not None:
|
879 |
-
clean_latents_4x = clean_latents_4x.to(hidden_states)
|
880 |
-
clean_latents_4x = pad_for_3d_conv(clean_latents_4x, (4, 8, 8))
|
881 |
-
clean_latents_4x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_4x, clean_latents_4x)
|
882 |
-
clean_latents_4x = clean_latents_4x.flatten(2).transpose(1, 2)
|
883 |
-
|
884 |
-
clean_latent_4x_rope_freqs = self.rope(frame_indices=clean_latent_4x_indices, height=H, width=W, device=clean_latents_4x.device)
|
885 |
-
clean_latent_4x_rope_freqs = pad_for_3d_conv(clean_latent_4x_rope_freqs, (4, 4, 4))
|
886 |
-
clean_latent_4x_rope_freqs = center_down_sample_3d(clean_latent_4x_rope_freqs, (4, 4, 4))
|
887 |
-
clean_latent_4x_rope_freqs = clean_latent_4x_rope_freqs.flatten(2).transpose(1, 2)
|
888 |
-
|
889 |
-
hidden_states = torch.cat([clean_latents_4x, hidden_states], dim=1)
|
890 |
-
rope_freqs = torch.cat([clean_latent_4x_rope_freqs, rope_freqs], dim=1)
|
891 |
-
|
892 |
-
return hidden_states, rope_freqs
|
893 |
-
|
894 |
-
def forward(
|
895 |
-
self,
|
896 |
-
hidden_states, timestep, encoder_hidden_states, encoder_attention_mask, pooled_projections, guidance,
|
897 |
-
latent_indices=None,
|
898 |
-
clean_latents=None, clean_latent_indices=None,
|
899 |
-
clean_latents_2x=None, clean_latent_2x_indices=None,
|
900 |
-
clean_latents_4x=None, clean_latent_4x_indices=None,
|
901 |
-
image_embeddings=None,
|
902 |
-
attention_kwargs=None, return_dict=True
|
903 |
-
):
|
904 |
-
|
905 |
-
if attention_kwargs is None:
|
906 |
-
attention_kwargs = {}
|
907 |
-
|
908 |
-
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
909 |
-
p, p_t = self.config['patch_size'], self.config['patch_size_t']
|
910 |
-
post_patch_num_frames = num_frames // p_t
|
911 |
-
post_patch_height = height // p
|
912 |
-
post_patch_width = width // p
|
913 |
-
original_context_length = post_patch_num_frames * post_patch_height * post_patch_width
|
914 |
-
|
915 |
-
hidden_states, rope_freqs = self.process_input_hidden_states(hidden_states, latent_indices, clean_latents, clean_latent_indices, clean_latents_2x, clean_latent_2x_indices, clean_latents_4x, clean_latent_4x_indices)
|
916 |
-
|
917 |
-
temb = self.gradient_checkpointing_method(self.time_text_embed, timestep, guidance, pooled_projections)
|
918 |
-
encoder_hidden_states = self.gradient_checkpointing_method(self.context_embedder, encoder_hidden_states, timestep, encoder_attention_mask)
|
919 |
-
|
920 |
-
if self.image_projection is not None:
|
921 |
-
assert image_embeddings is not None, 'You must use image embeddings!'
|
922 |
-
extra_encoder_hidden_states = self.gradient_checkpointing_method(self.image_projection, image_embeddings)
|
923 |
-
extra_attention_mask = torch.ones((batch_size, extra_encoder_hidden_states.shape[1]), dtype=encoder_attention_mask.dtype, device=encoder_attention_mask.device)
|
924 |
-
|
925 |
-
# must cat before (not after) encoder_hidden_states, due to attn masking
|
926 |
-
encoder_hidden_states = torch.cat([extra_encoder_hidden_states, encoder_hidden_states], dim=1)
|
927 |
-
encoder_attention_mask = torch.cat([extra_attention_mask, encoder_attention_mask], dim=1)
|
928 |
-
|
929 |
-
with torch.no_grad():
|
930 |
-
if batch_size == 1:
|
931 |
-
# When batch size is 1, we do not need any masks or var-len funcs since cropping is mathematically same to what we want
|
932 |
-
# If they are not same, then their impls are wrong. Ours are always the correct one.
|
933 |
-
text_len = encoder_attention_mask.sum().item()
|
934 |
-
encoder_hidden_states = encoder_hidden_states[:, :text_len]
|
935 |
-
attention_mask = None, None, None, None
|
936 |
-
else:
|
937 |
-
img_seq_len = hidden_states.shape[1]
|
938 |
-
txt_seq_len = encoder_hidden_states.shape[1]
|
939 |
-
|
940 |
-
cu_seqlens_q = get_cu_seqlens(encoder_attention_mask, img_seq_len)
|
941 |
-
cu_seqlens_kv = cu_seqlens_q
|
942 |
-
max_seqlen_q = img_seq_len + txt_seq_len
|
943 |
-
max_seqlen_kv = max_seqlen_q
|
944 |
-
|
945 |
-
attention_mask = cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv
|
946 |
-
|
947 |
-
if self.enable_teacache:
|
948 |
-
modulated_inp = self.transformer_blocks[0].norm1(hidden_states, emb=temb)[0]
|
949 |
-
|
950 |
-
if self.cnt == 0 or self.cnt == self.num_steps-1:
|
951 |
-
should_calc = True
|
952 |
-
self.accumulated_rel_l1_distance = 0
|
953 |
-
else:
|
954 |
-
curr_rel_l1 = ((modulated_inp - self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()
|
955 |
-
self.accumulated_rel_l1_distance += self.teacache_rescale_func(curr_rel_l1)
|
956 |
-
should_calc = self.accumulated_rel_l1_distance >= self.rel_l1_thresh
|
957 |
-
|
958 |
-
if should_calc:
|
959 |
-
self.accumulated_rel_l1_distance = 0
|
960 |
-
|
961 |
-
self.previous_modulated_input = modulated_inp
|
962 |
-
self.cnt += 1
|
963 |
-
|
964 |
-
if self.cnt == self.num_steps:
|
965 |
-
self.cnt = 0
|
966 |
-
|
967 |
-
if not should_calc:
|
968 |
-
hidden_states = hidden_states + self.previous_residual
|
969 |
-
else:
|
970 |
-
ori_hidden_states = hidden_states.clone()
|
971 |
-
|
972 |
-
for block_id, block in enumerate(self.transformer_blocks):
|
973 |
-
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
974 |
-
block,
|
975 |
-
hidden_states,
|
976 |
-
encoder_hidden_states,
|
977 |
-
temb,
|
978 |
-
attention_mask,
|
979 |
-
rope_freqs
|
980 |
-
)
|
981 |
-
|
982 |
-
for block_id, block in enumerate(self.single_transformer_blocks):
|
983 |
-
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
984 |
-
block,
|
985 |
-
hidden_states,
|
986 |
-
encoder_hidden_states,
|
987 |
-
temb,
|
988 |
-
attention_mask,
|
989 |
-
rope_freqs
|
990 |
-
)
|
991 |
-
|
992 |
-
self.previous_residual = hidden_states - ori_hidden_states
|
993 |
-
else:
|
994 |
-
for block_id, block in enumerate(self.transformer_blocks):
|
995 |
-
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
996 |
-
block,
|
997 |
-
hidden_states,
|
998 |
-
encoder_hidden_states,
|
999 |
-
temb,
|
1000 |
-
attention_mask,
|
1001 |
-
rope_freqs
|
1002 |
-
)
|
1003 |
-
|
1004 |
-
for block_id, block in enumerate(self.single_transformer_blocks):
|
1005 |
-
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
1006 |
-
block,
|
1007 |
-
hidden_states,
|
1008 |
-
encoder_hidden_states,
|
1009 |
-
temb,
|
1010 |
-
attention_mask,
|
1011 |
-
rope_freqs
|
1012 |
-
)
|
1013 |
-
|
1014 |
-
hidden_states = self.gradient_checkpointing_method(self.norm_out, hidden_states, temb)
|
1015 |
-
|
1016 |
-
hidden_states = hidden_states[:, -original_context_length:, :]
|
1017 |
-
|
1018 |
-
if self.high_quality_fp32_output_for_inference:
|
1019 |
-
hidden_states = hidden_states.to(dtype=torch.float32)
|
1020 |
-
if self.proj_out.weight.dtype != torch.float32:
|
1021 |
-
self.proj_out.to(dtype=torch.float32)
|
1022 |
-
|
1023 |
-
hidden_states = self.gradient_checkpointing_method(self.proj_out, hidden_states)
|
1024 |
-
|
1025 |
-
hidden_states = einops.rearrange(hidden_states, 'b (t h w) (c pt ph pw) -> b c (t pt) (h ph) (w pw)',
|
1026 |
-
t=post_patch_num_frames, h=post_patch_height, w=post_patch_width,
|
1027 |
-
pt=p_t, ph=p, pw=p)
|
1028 |
-
|
1029 |
-
if return_dict:
|
1030 |
-
return Transformer2DModelOutput(sample=hidden_states)
|
1031 |
-
|
1032 |
-
return hidden_states,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusers_helper/pipelines/k_diffusion_hunyuan.py
DELETED
@@ -1,120 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import math
|
3 |
-
|
4 |
-
from diffusers_helper.k_diffusion.uni_pc_fm import sample_unipc
|
5 |
-
from diffusers_helper.k_diffusion.wrapper import fm_wrapper
|
6 |
-
from diffusers_helper.utils import repeat_to_batch_size
|
7 |
-
|
8 |
-
|
9 |
-
def flux_time_shift(t, mu=1.15, sigma=1.0):
|
10 |
-
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
11 |
-
|
12 |
-
|
13 |
-
def calculate_flux_mu(context_length, x1=256, y1=0.5, x2=4096, y2=1.15, exp_max=7.0):
|
14 |
-
k = (y2 - y1) / (x2 - x1)
|
15 |
-
b = y1 - k * x1
|
16 |
-
mu = k * context_length + b
|
17 |
-
mu = min(mu, math.log(exp_max))
|
18 |
-
return mu
|
19 |
-
|
20 |
-
|
21 |
-
def get_flux_sigmas_from_mu(n, mu):
|
22 |
-
sigmas = torch.linspace(1, 0, steps=n + 1)
|
23 |
-
sigmas = flux_time_shift(sigmas, mu=mu)
|
24 |
-
return sigmas
|
25 |
-
|
26 |
-
|
27 |
-
@torch.inference_mode()
|
28 |
-
def sample_hunyuan(
|
29 |
-
transformer,
|
30 |
-
sampler='unipc',
|
31 |
-
initial_latent=None,
|
32 |
-
concat_latent=None,
|
33 |
-
strength=1.0,
|
34 |
-
width=512,
|
35 |
-
height=512,
|
36 |
-
frames=16,
|
37 |
-
real_guidance_scale=1.0,
|
38 |
-
distilled_guidance_scale=6.0,
|
39 |
-
guidance_rescale=0.0,
|
40 |
-
shift=None,
|
41 |
-
num_inference_steps=25,
|
42 |
-
batch_size=None,
|
43 |
-
generator=None,
|
44 |
-
prompt_embeds=None,
|
45 |
-
prompt_embeds_mask=None,
|
46 |
-
prompt_poolers=None,
|
47 |
-
negative_prompt_embeds=None,
|
48 |
-
negative_prompt_embeds_mask=None,
|
49 |
-
negative_prompt_poolers=None,
|
50 |
-
dtype=torch.bfloat16,
|
51 |
-
device=None,
|
52 |
-
negative_kwargs=None,
|
53 |
-
callback=None,
|
54 |
-
**kwargs,
|
55 |
-
):
|
56 |
-
device = device or transformer.device
|
57 |
-
|
58 |
-
if batch_size is None:
|
59 |
-
batch_size = int(prompt_embeds.shape[0])
|
60 |
-
|
61 |
-
latents = torch.randn((batch_size, 16, (frames + 3) // 4, height // 8, width // 8), generator=generator, device=generator.device).to(device=device, dtype=torch.float32)
|
62 |
-
|
63 |
-
B, C, T, H, W = latents.shape
|
64 |
-
seq_length = T * H * W // 4
|
65 |
-
|
66 |
-
if shift is None:
|
67 |
-
mu = calculate_flux_mu(seq_length, exp_max=7.0)
|
68 |
-
else:
|
69 |
-
mu = math.log(shift)
|
70 |
-
|
71 |
-
sigmas = get_flux_sigmas_from_mu(num_inference_steps, mu).to(device)
|
72 |
-
|
73 |
-
k_model = fm_wrapper(transformer)
|
74 |
-
|
75 |
-
if initial_latent is not None:
|
76 |
-
sigmas = sigmas * strength
|
77 |
-
first_sigma = sigmas[0].to(device=device, dtype=torch.float32)
|
78 |
-
initial_latent = initial_latent.to(device=device, dtype=torch.float32)
|
79 |
-
latents = initial_latent.float() * (1.0 - first_sigma) + latents.float() * first_sigma
|
80 |
-
|
81 |
-
if concat_latent is not None:
|
82 |
-
concat_latent = concat_latent.to(latents)
|
83 |
-
|
84 |
-
distilled_guidance = torch.tensor([distilled_guidance_scale * 1000.0] * batch_size).to(device=device, dtype=dtype)
|
85 |
-
|
86 |
-
prompt_embeds = repeat_to_batch_size(prompt_embeds, batch_size)
|
87 |
-
prompt_embeds_mask = repeat_to_batch_size(prompt_embeds_mask, batch_size)
|
88 |
-
prompt_poolers = repeat_to_batch_size(prompt_poolers, batch_size)
|
89 |
-
negative_prompt_embeds = repeat_to_batch_size(negative_prompt_embeds, batch_size)
|
90 |
-
negative_prompt_embeds_mask = repeat_to_batch_size(negative_prompt_embeds_mask, batch_size)
|
91 |
-
negative_prompt_poolers = repeat_to_batch_size(negative_prompt_poolers, batch_size)
|
92 |
-
concat_latent = repeat_to_batch_size(concat_latent, batch_size)
|
93 |
-
|
94 |
-
sampler_kwargs = dict(
|
95 |
-
dtype=dtype,
|
96 |
-
cfg_scale=real_guidance_scale,
|
97 |
-
cfg_rescale=guidance_rescale,
|
98 |
-
concat_latent=concat_latent,
|
99 |
-
positive=dict(
|
100 |
-
pooled_projections=prompt_poolers,
|
101 |
-
encoder_hidden_states=prompt_embeds,
|
102 |
-
encoder_attention_mask=prompt_embeds_mask,
|
103 |
-
guidance=distilled_guidance,
|
104 |
-
**kwargs,
|
105 |
-
),
|
106 |
-
negative=dict(
|
107 |
-
pooled_projections=negative_prompt_poolers,
|
108 |
-
encoder_hidden_states=negative_prompt_embeds,
|
109 |
-
encoder_attention_mask=negative_prompt_embeds_mask,
|
110 |
-
guidance=distilled_guidance,
|
111 |
-
**(kwargs if negative_kwargs is None else {**kwargs, **negative_kwargs}),
|
112 |
-
)
|
113 |
-
)
|
114 |
-
|
115 |
-
if sampler == 'unipc':
|
116 |
-
results = sample_unipc(k_model, latents, sigmas, extra_args=sampler_kwargs, disable=False, callback=callback)
|
117 |
-
else:
|
118 |
-
raise NotImplementedError(f'Sampler {sampler} is not supported.')
|
119 |
-
|
120 |
-
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusers_helper/thread_utils.py
DELETED
@@ -1,123 +0,0 @@
|
|
1 |
-
import time
|
2 |
-
|
3 |
-
from threading import Thread, Lock
|
4 |
-
|
5 |
-
|
6 |
-
class Listener:
|
7 |
-
task_queue = []
|
8 |
-
lock = Lock()
|
9 |
-
thread = None
|
10 |
-
|
11 |
-
@classmethod
|
12 |
-
def _process_tasks(cls):
|
13 |
-
while True:
|
14 |
-
task = None
|
15 |
-
with cls.lock:
|
16 |
-
if cls.task_queue:
|
17 |
-
task = cls.task_queue.pop(0)
|
18 |
-
|
19 |
-
if task is None:
|
20 |
-
time.sleep(0.001)
|
21 |
-
continue
|
22 |
-
|
23 |
-
func, args, kwargs = task
|
24 |
-
try:
|
25 |
-
func(*args, **kwargs)
|
26 |
-
except Exception as e:
|
27 |
-
print(f"Error in listener thread: {e}")
|
28 |
-
|
29 |
-
@classmethod
|
30 |
-
def add_task(cls, func, *args, **kwargs):
|
31 |
-
with cls.lock:
|
32 |
-
cls.task_queue.append((func, args, kwargs))
|
33 |
-
|
34 |
-
if cls.thread is None:
|
35 |
-
cls.thread = Thread(target=cls._process_tasks, daemon=True)
|
36 |
-
cls.thread.start()
|
37 |
-
|
38 |
-
|
39 |
-
def async_run(func, *args, **kwargs):
|
40 |
-
Listener.add_task(func, *args, **kwargs)
|
41 |
-
|
42 |
-
|
43 |
-
class FIFOQueue:
|
44 |
-
def __init__(self):
|
45 |
-
self.queue = []
|
46 |
-
self.lock = Lock()
|
47 |
-
print("【调试】创建新的FIFOQueue")
|
48 |
-
|
49 |
-
def push(self, item):
|
50 |
-
print(f"【调试】FIFOQueue.push: 准备添加项目: {item}")
|
51 |
-
with self.lock:
|
52 |
-
self.queue.append(item)
|
53 |
-
print(f"【调试】FIFOQueue.push: 成功添加项目: {item}, 当前队列长度: {len(self.queue)}")
|
54 |
-
|
55 |
-
def pop(self):
|
56 |
-
print("【调试】FIFOQueue.pop: 准备弹出队列首项")
|
57 |
-
with self.lock:
|
58 |
-
if self.queue:
|
59 |
-
item = self.queue.pop(0)
|
60 |
-
print(f"【调试】FIFOQueue.pop: 成功弹出项目: {item}, 剩余队列长度: {len(self.queue)}")
|
61 |
-
return item
|
62 |
-
print("【调试】FIFOQueue.pop: 队列为空,返回None")
|
63 |
-
return None
|
64 |
-
|
65 |
-
def top(self):
|
66 |
-
print("【调试】FIFOQueue.top: 准备查看队列首项")
|
67 |
-
with self.lock:
|
68 |
-
if self.queue:
|
69 |
-
item = self.queue[0]
|
70 |
-
print(f"【调试】FIFOQueue.top: 队列首项为: {item}, 当前队列长度: {len(self.queue)}")
|
71 |
-
return item
|
72 |
-
print("【调试】FIFOQueue.top: 队列为空,返回None")
|
73 |
-
return None
|
74 |
-
|
75 |
-
def next(self):
|
76 |
-
print("【调试】FIFOQueue.next: 等待弹出队列首项")
|
77 |
-
while True:
|
78 |
-
with self.lock:
|
79 |
-
if self.queue:
|
80 |
-
item = self.queue.pop(0)
|
81 |
-
print(f"【调试】FIFOQueue.next: 成功弹出项目: {item}, 剩余队列长度: {len(self.queue)}")
|
82 |
-
return item
|
83 |
-
|
84 |
-
time.sleep(0.001)
|
85 |
-
|
86 |
-
|
87 |
-
class AsyncStream:
|
88 |
-
def __init__(self):
|
89 |
-
self.input_queue = FIFOQueue()
|
90 |
-
self.output_queue = FIFOQueue()
|
91 |
-
|
92 |
-
|
93 |
-
class InterruptibleStreamData:
|
94 |
-
def __init__(self):
|
95 |
-
self.input_queue = FIFOQueue()
|
96 |
-
self.output_queue = FIFOQueue()
|
97 |
-
print("【调试】创建新的InterruptibleStreamData,初始化输入输出队列")
|
98 |
-
|
99 |
-
# 推送数据至输出队列
|
100 |
-
def push_output(self, item):
|
101 |
-
print(f"【调试】InterruptibleStreamData.push_output: 准备推送输出: {type(item)}")
|
102 |
-
self.output_queue.push(item)
|
103 |
-
print(f"【调试】InterruptibleStreamData.push_output: 成功推送输出")
|
104 |
-
|
105 |
-
# 获取下一个输出数据
|
106 |
-
def get_output(self):
|
107 |
-
print("【调试】InterruptibleStreamData.get_output: 准备获取下一个输出数据")
|
108 |
-
item = self.output_queue.next()
|
109 |
-
print(f"【调试】InterruptibleStreamData.get_output: 获取到输出数据: {type(item)}")
|
110 |
-
return item
|
111 |
-
|
112 |
-
# 推送数据至输入队列
|
113 |
-
def push_input(self, item):
|
114 |
-
print(f"【调试】InterruptibleStreamData.push_input: 准备推送输入: {type(item)}")
|
115 |
-
self.input_queue.push(item)
|
116 |
-
print(f"【调试】InterruptibleStreamData.push_input: 成功推送输入")
|
117 |
-
|
118 |
-
# 获取下一个输入数据
|
119 |
-
def get_input(self):
|
120 |
-
print("【调试】InterruptibleStreamData.get_input: 准备获取下一个输入数据")
|
121 |
-
item = self.input_queue.next()
|
122 |
-
print(f"【调试】InterruptibleStreamData.get_input: 获取到输入数据: {type(item)}")
|
123 |
-
return item
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusers_helper/utils.py
DELETED
@@ -1,613 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import cv2
|
3 |
-
import json
|
4 |
-
import random
|
5 |
-
import glob
|
6 |
-
import torch
|
7 |
-
import einops
|
8 |
-
import numpy as np
|
9 |
-
import datetime
|
10 |
-
import torchvision
|
11 |
-
|
12 |
-
import safetensors.torch as sf
|
13 |
-
from PIL import Image
|
14 |
-
|
15 |
-
|
16 |
-
def min_resize(x, m):
|
17 |
-
if x.shape[0] < x.shape[1]:
|
18 |
-
s0 = m
|
19 |
-
s1 = int(float(m) / float(x.shape[0]) * float(x.shape[1]))
|
20 |
-
else:
|
21 |
-
s0 = int(float(m) / float(x.shape[1]) * float(x.shape[0]))
|
22 |
-
s1 = m
|
23 |
-
new_max = max(s1, s0)
|
24 |
-
raw_max = max(x.shape[0], x.shape[1])
|
25 |
-
if new_max < raw_max:
|
26 |
-
interpolation = cv2.INTER_AREA
|
27 |
-
else:
|
28 |
-
interpolation = cv2.INTER_LANCZOS4
|
29 |
-
y = cv2.resize(x, (s1, s0), interpolation=interpolation)
|
30 |
-
return y
|
31 |
-
|
32 |
-
|
33 |
-
def d_resize(x, y):
|
34 |
-
H, W, C = y.shape
|
35 |
-
new_min = min(H, W)
|
36 |
-
raw_min = min(x.shape[0], x.shape[1])
|
37 |
-
if new_min < raw_min:
|
38 |
-
interpolation = cv2.INTER_AREA
|
39 |
-
else:
|
40 |
-
interpolation = cv2.INTER_LANCZOS4
|
41 |
-
y = cv2.resize(x, (W, H), interpolation=interpolation)
|
42 |
-
return y
|
43 |
-
|
44 |
-
|
45 |
-
def resize_and_center_crop(image, target_width, target_height):
|
46 |
-
if target_height == image.shape[0] and target_width == image.shape[1]:
|
47 |
-
return image
|
48 |
-
|
49 |
-
pil_image = Image.fromarray(image)
|
50 |
-
original_width, original_height = pil_image.size
|
51 |
-
scale_factor = max(target_width / original_width, target_height / original_height)
|
52 |
-
resized_width = int(round(original_width * scale_factor))
|
53 |
-
resized_height = int(round(original_height * scale_factor))
|
54 |
-
resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS)
|
55 |
-
left = (resized_width - target_width) / 2
|
56 |
-
top = (resized_height - target_height) / 2
|
57 |
-
right = (resized_width + target_width) / 2
|
58 |
-
bottom = (resized_height + target_height) / 2
|
59 |
-
cropped_image = resized_image.crop((left, top, right, bottom))
|
60 |
-
return np.array(cropped_image)
|
61 |
-
|
62 |
-
|
63 |
-
def resize_and_center_crop_pytorch(image, target_width, target_height):
|
64 |
-
B, C, H, W = image.shape
|
65 |
-
|
66 |
-
if H == target_height and W == target_width:
|
67 |
-
return image
|
68 |
-
|
69 |
-
scale_factor = max(target_width / W, target_height / H)
|
70 |
-
resized_width = int(round(W * scale_factor))
|
71 |
-
resized_height = int(round(H * scale_factor))
|
72 |
-
|
73 |
-
resized = torch.nn.functional.interpolate(image, size=(resized_height, resized_width), mode='bilinear', align_corners=False)
|
74 |
-
|
75 |
-
top = (resized_height - target_height) // 2
|
76 |
-
left = (resized_width - target_width) // 2
|
77 |
-
cropped = resized[:, :, top:top + target_height, left:left + target_width]
|
78 |
-
|
79 |
-
return cropped
|
80 |
-
|
81 |
-
|
82 |
-
def resize_without_crop(image, target_width, target_height):
|
83 |
-
if target_height == image.shape[0] and target_width == image.shape[1]:
|
84 |
-
return image
|
85 |
-
|
86 |
-
pil_image = Image.fromarray(image)
|
87 |
-
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
|
88 |
-
return np.array(resized_image)
|
89 |
-
|
90 |
-
|
91 |
-
def just_crop(image, w, h):
|
92 |
-
if h == image.shape[0] and w == image.shape[1]:
|
93 |
-
return image
|
94 |
-
|
95 |
-
original_height, original_width = image.shape[:2]
|
96 |
-
k = min(original_height / h, original_width / w)
|
97 |
-
new_width = int(round(w * k))
|
98 |
-
new_height = int(round(h * k))
|
99 |
-
x_start = (original_width - new_width) // 2
|
100 |
-
y_start = (original_height - new_height) // 2
|
101 |
-
cropped_image = image[y_start:y_start + new_height, x_start:x_start + new_width]
|
102 |
-
return cropped_image
|
103 |
-
|
104 |
-
|
105 |
-
def write_to_json(data, file_path):
|
106 |
-
temp_file_path = file_path + ".tmp"
|
107 |
-
with open(temp_file_path, 'wt', encoding='utf-8') as temp_file:
|
108 |
-
json.dump(data, temp_file, indent=4)
|
109 |
-
os.replace(temp_file_path, file_path)
|
110 |
-
return
|
111 |
-
|
112 |
-
|
113 |
-
def read_from_json(file_path):
|
114 |
-
with open(file_path, 'rt', encoding='utf-8') as file:
|
115 |
-
data = json.load(file)
|
116 |
-
return data
|
117 |
-
|
118 |
-
|
119 |
-
def get_active_parameters(m):
|
120 |
-
return {k: v for k, v in m.named_parameters() if v.requires_grad}
|
121 |
-
|
122 |
-
|
123 |
-
def cast_training_params(m, dtype=torch.float32):
|
124 |
-
result = {}
|
125 |
-
for n, param in m.named_parameters():
|
126 |
-
if param.requires_grad:
|
127 |
-
param.data = param.to(dtype)
|
128 |
-
result[n] = param
|
129 |
-
return result
|
130 |
-
|
131 |
-
|
132 |
-
def separate_lora_AB(parameters, B_patterns=None):
|
133 |
-
parameters_normal = {}
|
134 |
-
parameters_B = {}
|
135 |
-
|
136 |
-
if B_patterns is None:
|
137 |
-
B_patterns = ['.lora_B.', '__zero__']
|
138 |
-
|
139 |
-
for k, v in parameters.items():
|
140 |
-
if any(B_pattern in k for B_pattern in B_patterns):
|
141 |
-
parameters_B[k] = v
|
142 |
-
else:
|
143 |
-
parameters_normal[k] = v
|
144 |
-
|
145 |
-
return parameters_normal, parameters_B
|
146 |
-
|
147 |
-
|
148 |
-
def set_attr_recursive(obj, attr, value):
|
149 |
-
attrs = attr.split(".")
|
150 |
-
for name in attrs[:-1]:
|
151 |
-
obj = getattr(obj, name)
|
152 |
-
setattr(obj, attrs[-1], value)
|
153 |
-
return
|
154 |
-
|
155 |
-
|
156 |
-
def print_tensor_list_size(tensors):
|
157 |
-
total_size = 0
|
158 |
-
total_elements = 0
|
159 |
-
|
160 |
-
if isinstance(tensors, dict):
|
161 |
-
tensors = tensors.values()
|
162 |
-
|
163 |
-
for tensor in tensors:
|
164 |
-
total_size += tensor.nelement() * tensor.element_size()
|
165 |
-
total_elements += tensor.nelement()
|
166 |
-
|
167 |
-
total_size_MB = total_size / (1024 ** 2)
|
168 |
-
total_elements_B = total_elements / 1e9
|
169 |
-
|
170 |
-
print(f"Total number of tensors: {len(tensors)}")
|
171 |
-
print(f"Total size of tensors: {total_size_MB:.2f} MB")
|
172 |
-
print(f"Total number of parameters: {total_elements_B:.3f} billion")
|
173 |
-
return
|
174 |
-
|
175 |
-
|
176 |
-
@torch.no_grad()
|
177 |
-
def batch_mixture(a, b=None, probability_a=0.5, mask_a=None):
|
178 |
-
batch_size = a.size(0)
|
179 |
-
|
180 |
-
if b is None:
|
181 |
-
b = torch.zeros_like(a)
|
182 |
-
|
183 |
-
if mask_a is None:
|
184 |
-
mask_a = torch.rand(batch_size) < probability_a
|
185 |
-
|
186 |
-
mask_a = mask_a.to(a.device)
|
187 |
-
mask_a = mask_a.reshape((batch_size,) + (1,) * (a.dim() - 1))
|
188 |
-
result = torch.where(mask_a, a, b)
|
189 |
-
return result
|
190 |
-
|
191 |
-
|
192 |
-
@torch.no_grad()
|
193 |
-
def zero_module(module):
|
194 |
-
for p in module.parameters():
|
195 |
-
p.detach().zero_()
|
196 |
-
return module
|
197 |
-
|
198 |
-
|
199 |
-
@torch.no_grad()
|
200 |
-
def supress_lower_channels(m, k, alpha=0.01):
|
201 |
-
data = m.weight.data.clone()
|
202 |
-
|
203 |
-
assert int(data.shape[1]) >= k
|
204 |
-
|
205 |
-
data[:, :k] = data[:, :k] * alpha
|
206 |
-
m.weight.data = data.contiguous().clone()
|
207 |
-
return m
|
208 |
-
|
209 |
-
|
210 |
-
def freeze_module(m):
|
211 |
-
if not hasattr(m, '_forward_inside_frozen_module'):
|
212 |
-
m._forward_inside_frozen_module = m.forward
|
213 |
-
m.requires_grad_(False)
|
214 |
-
m.forward = torch.no_grad()(m.forward)
|
215 |
-
return m
|
216 |
-
|
217 |
-
|
218 |
-
def get_latest_safetensors(folder_path):
|
219 |
-
safetensors_files = glob.glob(os.path.join(folder_path, '*.safetensors'))
|
220 |
-
|
221 |
-
if not safetensors_files:
|
222 |
-
raise ValueError('No file to resume!')
|
223 |
-
|
224 |
-
latest_file = max(safetensors_files, key=os.path.getmtime)
|
225 |
-
latest_file = os.path.abspath(os.path.realpath(latest_file))
|
226 |
-
return latest_file
|
227 |
-
|
228 |
-
|
229 |
-
def generate_random_prompt_from_tags(tags_str, min_length=3, max_length=32):
|
230 |
-
tags = tags_str.split(', ')
|
231 |
-
tags = random.sample(tags, k=min(random.randint(min_length, max_length), len(tags)))
|
232 |
-
prompt = ', '.join(tags)
|
233 |
-
return prompt
|
234 |
-
|
235 |
-
|
236 |
-
def interpolate_numbers(a, b, n, round_to_int=False, gamma=1.0):
|
237 |
-
numbers = a + (b - a) * (np.linspace(0, 1, n) ** gamma)
|
238 |
-
if round_to_int:
|
239 |
-
numbers = np.round(numbers).astype(int)
|
240 |
-
return numbers.tolist()
|
241 |
-
|
242 |
-
|
243 |
-
def uniform_random_by_intervals(inclusive, exclusive, n, round_to_int=False):
|
244 |
-
edges = np.linspace(0, 1, n + 1)
|
245 |
-
points = np.random.uniform(edges[:-1], edges[1:])
|
246 |
-
numbers = inclusive + (exclusive - inclusive) * points
|
247 |
-
if round_to_int:
|
248 |
-
numbers = np.round(numbers).astype(int)
|
249 |
-
return numbers.tolist()
|
250 |
-
|
251 |
-
|
252 |
-
def soft_append_bcthw(history, current, overlap=0):
|
253 |
-
if overlap <= 0:
|
254 |
-
return torch.cat([history, current], dim=2)
|
255 |
-
|
256 |
-
assert history.shape[2] >= overlap, f"History length ({history.shape[2]}) must be >= overlap ({overlap})"
|
257 |
-
assert current.shape[2] >= overlap, f"Current length ({current.shape[2]}) must be >= overlap ({overlap})"
|
258 |
-
|
259 |
-
weights = torch.linspace(1, 0, overlap, dtype=history.dtype, device=history.device).view(1, 1, -1, 1, 1)
|
260 |
-
blended = weights * history[:, :, -overlap:] + (1 - weights) * current[:, :, :overlap]
|
261 |
-
output = torch.cat([history[:, :, :-overlap], blended, current[:, :, overlap:]], dim=2)
|
262 |
-
|
263 |
-
return output.to(history)
|
264 |
-
|
265 |
-
|
266 |
-
def save_bcthw_as_mp4(x, output_filename, fps=10):
|
267 |
-
b, c, t, h, w = x.shape
|
268 |
-
|
269 |
-
per_row = b
|
270 |
-
for p in [6, 5, 4, 3, 2]:
|
271 |
-
if b % p == 0:
|
272 |
-
per_row = p
|
273 |
-
break
|
274 |
-
|
275 |
-
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
|
276 |
-
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
|
277 |
-
x = x.detach().cpu().to(torch.uint8)
|
278 |
-
x = einops.rearrange(x, '(m n) c t h w -> t (m h) (n w) c', n=per_row)
|
279 |
-
torchvision.io.write_video(output_filename, x, fps=fps, video_codec='libx264', options={'crf': '0'})
|
280 |
-
return x
|
281 |
-
|
282 |
-
|
283 |
-
def save_bcthw_as_png(x, output_filename):
|
284 |
-
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
|
285 |
-
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
|
286 |
-
x = x.detach().cpu().to(torch.uint8)
|
287 |
-
x = einops.rearrange(x, 'b c t h w -> c (b h) (t w)')
|
288 |
-
torchvision.io.write_png(x, output_filename)
|
289 |
-
return output_filename
|
290 |
-
|
291 |
-
|
292 |
-
def save_bchw_as_png(x, output_filename):
|
293 |
-
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
|
294 |
-
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
|
295 |
-
x = x.detach().cpu().to(torch.uint8)
|
296 |
-
x = einops.rearrange(x, 'b c h w -> c h (b w)')
|
297 |
-
torchvision.io.write_png(x, output_filename)
|
298 |
-
return output_filename
|
299 |
-
|
300 |
-
|
301 |
-
def add_tensors_with_padding(tensor1, tensor2):
|
302 |
-
if tensor1.shape == tensor2.shape:
|
303 |
-
return tensor1 + tensor2
|
304 |
-
|
305 |
-
shape1 = tensor1.shape
|
306 |
-
shape2 = tensor2.shape
|
307 |
-
|
308 |
-
new_shape = tuple(max(s1, s2) for s1, s2 in zip(shape1, shape2))
|
309 |
-
|
310 |
-
padded_tensor1 = torch.zeros(new_shape)
|
311 |
-
padded_tensor2 = torch.zeros(new_shape)
|
312 |
-
|
313 |
-
padded_tensor1[tuple(slice(0, s) for s in shape1)] = tensor1
|
314 |
-
padded_tensor2[tuple(slice(0, s) for s in shape2)] = tensor2
|
315 |
-
|
316 |
-
result = padded_tensor1 + padded_tensor2
|
317 |
-
return result
|
318 |
-
|
319 |
-
|
320 |
-
def print_free_mem():
|
321 |
-
torch.cuda.empty_cache()
|
322 |
-
free_mem, total_mem = torch.cuda.mem_get_info(0)
|
323 |
-
free_mem_mb = free_mem / (1024 ** 2)
|
324 |
-
total_mem_mb = total_mem / (1024 ** 2)
|
325 |
-
print(f"Free memory: {free_mem_mb:.2f} MB")
|
326 |
-
print(f"Total memory: {total_mem_mb:.2f} MB")
|
327 |
-
return
|
328 |
-
|
329 |
-
|
330 |
-
def print_gpu_parameters(device, state_dict, log_count=1):
|
331 |
-
summary = {"device": device, "keys_count": len(state_dict)}
|
332 |
-
|
333 |
-
logged_params = {}
|
334 |
-
for i, (key, tensor) in enumerate(state_dict.items()):
|
335 |
-
if i >= log_count:
|
336 |
-
break
|
337 |
-
logged_params[key] = tensor.flatten()[:3].tolist()
|
338 |
-
|
339 |
-
summary["params"] = logged_params
|
340 |
-
|
341 |
-
print(str(summary))
|
342 |
-
return
|
343 |
-
|
344 |
-
|
345 |
-
def visualize_txt_as_img(width, height, text, font_path='font/DejaVuSans.ttf', size=18):
|
346 |
-
from PIL import Image, ImageDraw, ImageFont
|
347 |
-
|
348 |
-
txt = Image.new("RGB", (width, height), color="white")
|
349 |
-
draw = ImageDraw.Draw(txt)
|
350 |
-
font = ImageFont.truetype(font_path, size=size)
|
351 |
-
|
352 |
-
if text == '':
|
353 |
-
return np.array(txt)
|
354 |
-
|
355 |
-
# Split text into lines that fit within the image width
|
356 |
-
lines = []
|
357 |
-
words = text.split()
|
358 |
-
current_line = words[0]
|
359 |
-
|
360 |
-
for word in words[1:]:
|
361 |
-
line_with_word = f"{current_line} {word}"
|
362 |
-
if draw.textbbox((0, 0), line_with_word, font=font)[2] <= width:
|
363 |
-
current_line = line_with_word
|
364 |
-
else:
|
365 |
-
lines.append(current_line)
|
366 |
-
current_line = word
|
367 |
-
|
368 |
-
lines.append(current_line)
|
369 |
-
|
370 |
-
# Draw the text line by line
|
371 |
-
y = 0
|
372 |
-
line_height = draw.textbbox((0, 0), "A", font=font)[3]
|
373 |
-
|
374 |
-
for line in lines:
|
375 |
-
if y + line_height > height:
|
376 |
-
break # stop drawing if the next line will be outside the image
|
377 |
-
draw.text((0, y), line, fill="black", font=font)
|
378 |
-
y += line_height
|
379 |
-
|
380 |
-
return np.array(txt)
|
381 |
-
|
382 |
-
|
383 |
-
def blue_mark(x):
|
384 |
-
x = x.copy()
|
385 |
-
c = x[:, :, 2]
|
386 |
-
b = cv2.blur(c, (9, 9))
|
387 |
-
x[:, :, 2] = ((c - b) * 16.0 + b).clip(-1, 1)
|
388 |
-
return x
|
389 |
-
|
390 |
-
|
391 |
-
def green_mark(x):
|
392 |
-
x = x.copy()
|
393 |
-
x[:, :, 2] = -1
|
394 |
-
x[:, :, 0] = -1
|
395 |
-
return x
|
396 |
-
|
397 |
-
|
398 |
-
def frame_mark(x):
|
399 |
-
x = x.copy()
|
400 |
-
x[:64] = -1
|
401 |
-
x[-64:] = -1
|
402 |
-
x[:, :8] = 1
|
403 |
-
x[:, -8:] = 1
|
404 |
-
return x
|
405 |
-
|
406 |
-
|
407 |
-
@torch.inference_mode()
|
408 |
-
def pytorch2numpy(imgs):
|
409 |
-
results = []
|
410 |
-
for x in imgs:
|
411 |
-
y = x.movedim(0, -1)
|
412 |
-
y = y * 127.5 + 127.5
|
413 |
-
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
|
414 |
-
results.append(y)
|
415 |
-
return results
|
416 |
-
|
417 |
-
|
418 |
-
@torch.inference_mode()
|
419 |
-
def numpy2pytorch(imgs):
|
420 |
-
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.5 - 1.0
|
421 |
-
h = h.movedim(-1, 1)
|
422 |
-
return h
|
423 |
-
|
424 |
-
|
425 |
-
@torch.no_grad()
|
426 |
-
def duplicate_prefix_to_suffix(x, count, zero_out=False):
|
427 |
-
if zero_out:
|
428 |
-
return torch.cat([x, torch.zeros_like(x[:count])], dim=0)
|
429 |
-
else:
|
430 |
-
return torch.cat([x, x[:count]], dim=0)
|
431 |
-
|
432 |
-
|
433 |
-
def weighted_mse(a, b, weight):
|
434 |
-
return torch.mean(weight.float() * (a.float() - b.float()) ** 2)
|
435 |
-
|
436 |
-
|
437 |
-
def clamped_linear_interpolation(x, x_min, y_min, x_max, y_max, sigma=1.0):
|
438 |
-
x = (x - x_min) / (x_max - x_min)
|
439 |
-
x = max(0.0, min(x, 1.0))
|
440 |
-
x = x ** sigma
|
441 |
-
return y_min + x * (y_max - y_min)
|
442 |
-
|
443 |
-
|
444 |
-
def expand_to_dims(x, target_dims):
|
445 |
-
return x.view(*x.shape, *([1] * max(0, target_dims - x.dim())))
|
446 |
-
|
447 |
-
|
448 |
-
def repeat_to_batch_size(tensor: torch.Tensor, batch_size: int):
|
449 |
-
if tensor is None:
|
450 |
-
return None
|
451 |
-
|
452 |
-
first_dim = tensor.shape[0]
|
453 |
-
|
454 |
-
if first_dim == batch_size:
|
455 |
-
return tensor
|
456 |
-
|
457 |
-
if batch_size % first_dim != 0:
|
458 |
-
raise ValueError(f"Cannot evenly repeat first dim {first_dim} to match batch_size {batch_size}.")
|
459 |
-
|
460 |
-
repeat_times = batch_size // first_dim
|
461 |
-
|
462 |
-
return tensor.repeat(repeat_times, *[1] * (tensor.dim() - 1))
|
463 |
-
|
464 |
-
|
465 |
-
def dim5(x):
|
466 |
-
return expand_to_dims(x, 5)
|
467 |
-
|
468 |
-
|
469 |
-
def dim4(x):
|
470 |
-
return expand_to_dims(x, 4)
|
471 |
-
|
472 |
-
|
473 |
-
def dim3(x):
|
474 |
-
return expand_to_dims(x, 3)
|
475 |
-
|
476 |
-
|
477 |
-
def crop_or_pad_yield_mask(x, length):
|
478 |
-
B, F, C = x.shape
|
479 |
-
device = x.device
|
480 |
-
dtype = x.dtype
|
481 |
-
|
482 |
-
if F < length:
|
483 |
-
y = torch.zeros((B, length, C), dtype=dtype, device=device)
|
484 |
-
mask = torch.zeros((B, length), dtype=torch.bool, device=device)
|
485 |
-
y[:, :F, :] = x
|
486 |
-
mask[:, :F] = True
|
487 |
-
return y, mask
|
488 |
-
|
489 |
-
return x[:, :length, :], torch.ones((B, length), dtype=torch.bool, device=device)
|
490 |
-
|
491 |
-
|
492 |
-
def extend_dim(x, dim, minimal_length, zero_pad=False):
|
493 |
-
original_length = int(x.shape[dim])
|
494 |
-
|
495 |
-
if original_length >= minimal_length:
|
496 |
-
return x
|
497 |
-
|
498 |
-
if zero_pad:
|
499 |
-
padding_shape = list(x.shape)
|
500 |
-
padding_shape[dim] = minimal_length - original_length
|
501 |
-
padding = torch.zeros(padding_shape, dtype=x.dtype, device=x.device)
|
502 |
-
else:
|
503 |
-
idx = (slice(None),) * dim + (slice(-1, None),) + (slice(None),) * (len(x.shape) - dim - 1)
|
504 |
-
last_element = x[idx]
|
505 |
-
padding = last_element.repeat_interleave(minimal_length - original_length, dim=dim)
|
506 |
-
|
507 |
-
return torch.cat([x, padding], dim=dim)
|
508 |
-
|
509 |
-
|
510 |
-
def lazy_positional_encoding(t, repeats=None):
|
511 |
-
if not isinstance(t, list):
|
512 |
-
t = [t]
|
513 |
-
|
514 |
-
from diffusers.models.embeddings import get_timestep_embedding
|
515 |
-
|
516 |
-
te = torch.tensor(t)
|
517 |
-
te = get_timestep_embedding(timesteps=te, embedding_dim=256, flip_sin_to_cos=True, downscale_freq_shift=0.0, scale=1.0)
|
518 |
-
|
519 |
-
if repeats is None:
|
520 |
-
return te
|
521 |
-
|
522 |
-
te = te[:, None, :].expand(-1, repeats, -1)
|
523 |
-
|
524 |
-
return te
|
525 |
-
|
526 |
-
|
527 |
-
def state_dict_offset_merge(A, B, C=None):
|
528 |
-
result = {}
|
529 |
-
keys = A.keys()
|
530 |
-
|
531 |
-
for key in keys:
|
532 |
-
A_value = A[key]
|
533 |
-
B_value = B[key].to(A_value)
|
534 |
-
|
535 |
-
if C is None:
|
536 |
-
result[key] = A_value + B_value
|
537 |
-
else:
|
538 |
-
C_value = C[key].to(A_value)
|
539 |
-
result[key] = A_value + B_value - C_value
|
540 |
-
|
541 |
-
return result
|
542 |
-
|
543 |
-
|
544 |
-
def state_dict_weighted_merge(state_dicts, weights):
|
545 |
-
if len(state_dicts) != len(weights):
|
546 |
-
raise ValueError("Number of state dictionaries must match number of weights")
|
547 |
-
|
548 |
-
if not state_dicts:
|
549 |
-
return {}
|
550 |
-
|
551 |
-
total_weight = sum(weights)
|
552 |
-
|
553 |
-
if total_weight == 0:
|
554 |
-
raise ValueError("Sum of weights cannot be zero")
|
555 |
-
|
556 |
-
normalized_weights = [w / total_weight for w in weights]
|
557 |
-
|
558 |
-
keys = state_dicts[0].keys()
|
559 |
-
result = {}
|
560 |
-
|
561 |
-
for key in keys:
|
562 |
-
result[key] = state_dicts[0][key] * normalized_weights[0]
|
563 |
-
|
564 |
-
for i in range(1, len(state_dicts)):
|
565 |
-
state_dict_value = state_dicts[i][key].to(result[key])
|
566 |
-
result[key] += state_dict_value * normalized_weights[i]
|
567 |
-
|
568 |
-
return result
|
569 |
-
|
570 |
-
|
571 |
-
def group_files_by_folder(all_files):
|
572 |
-
grouped_files = {}
|
573 |
-
|
574 |
-
for file in all_files:
|
575 |
-
folder_name = os.path.basename(os.path.dirname(file))
|
576 |
-
if folder_name not in grouped_files:
|
577 |
-
grouped_files[folder_name] = []
|
578 |
-
grouped_files[folder_name].append(file)
|
579 |
-
|
580 |
-
list_of_lists = list(grouped_files.values())
|
581 |
-
return list_of_lists
|
582 |
-
|
583 |
-
|
584 |
-
def generate_timestamp():
|
585 |
-
now = datetime.datetime.now()
|
586 |
-
timestamp = now.strftime('%y%m%d_%H%M%S')
|
587 |
-
milliseconds = f"{int(now.microsecond / 1000):03d}"
|
588 |
-
random_number = random.randint(0, 9999)
|
589 |
-
return f"{timestamp}_{milliseconds}_{random_number}"
|
590 |
-
|
591 |
-
|
592 |
-
def write_PIL_image_with_png_info(image, metadata, path):
|
593 |
-
from PIL.PngImagePlugin import PngInfo
|
594 |
-
|
595 |
-
png_info = PngInfo()
|
596 |
-
for key, value in metadata.items():
|
597 |
-
png_info.add_text(key, value)
|
598 |
-
|
599 |
-
image.save(path, "PNG", pnginfo=png_info)
|
600 |
-
return image
|
601 |
-
|
602 |
-
|
603 |
-
def torch_safe_save(content, path):
|
604 |
-
torch.save(content, path + '_tmp')
|
605 |
-
os.replace(path + '_tmp', path)
|
606 |
-
return path
|
607 |
-
|
608 |
-
|
609 |
-
def move_optimizer_to_device(optimizer, device):
|
610 |
-
for state in optimizer.state.values():
|
611 |
-
for k, v in state.items():
|
612 |
-
if isinstance(v, torch.Tensor):
|
613 |
-
state[k] = v.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|