topdu's picture
openocr demo
29f689c
raw
history blame
5.93 kB
import math
import numpy as np
import torch.nn as nn
from openrec.modeling.common import Block
def conv1x1(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes,
out_planes,
kernel_size=1,
stride=stride,
bias=False)
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding."""
return nn.Conv2d(in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=1,
bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv1x1(inplanes, planes)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes, stride)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet45(nn.Module):
def __init__(
self,
in_channels=3,
block=BasicBlock,
layers=[3, 4, 6, 6, 3],
strides=[2, 1, 2, 1, 1],
last_stage=False,
out_channels=256,
trans_layer=0,
out_dim=384,
feat2d=True,
return_list=False,
):
super(ResNet45, self).__init__()
self.inplanes = 32
self.conv1 = nn.Conv2d(in_channels,
32,
kernel_size=3,
stride=1,
padding=1,
bias=False)
self.bn1 = nn.BatchNorm2d(32)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(block, 32, layers[0], stride=strides[0])
self.layer2 = self._make_layer(block, 64, layers[1], stride=strides[1])
self.layer3 = self._make_layer(block,
128,
layers[2],
stride=strides[2])
self.layer4 = self._make_layer(block,
256,
layers[3],
stride=strides[3])
self.layer5 = self._make_layer(block,
512,
layers[4],
stride=strides[4])
self.out_channels = 512
self.feat2d = feat2d
self.return_list = return_list
if trans_layer > 0:
dpr = np.linspace(0, 0.1, trans_layer)
blocks = [nn.Linear(512, out_dim)] + [
Block(dim=out_dim,
num_heads=out_dim // 32,
mlp_ratio=4.0,
qkv_bias=False,
drop_path=dpr[i]) for i in range(trans_layer)
]
self.trans_blocks = nn.Sequential(*blocks)
dim = out_dim
self.out_channels = out_dim
else:
self.trans_blocks = None
dim = 512
self.last_stage = last_stage
if last_stage:
self.out_channels = out_channels
self.last_conv = nn.Linear(dim, self.out_channels, bias=False)
self.hardswish = nn.Hardswish()
self.dropout = nn.Dropout(p=0.1)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2.0 / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight, mean=0, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.zeros_(m.bias)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(
self.inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
bias=False,
),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x2 = self.layer2(x)
x3 = self.layer3(x2)
x4 = self.layer4(x3)
x5 = self.layer5(x4)
if self.return_list:
return [x2, x3, x4, x5]
x = x5
if self.trans_blocks is not None:
B, C, H, W = x.shape
x = self.trans_blocks(x.flatten(2, 3).transpose(1, 2))
x = x.transpose(1, 2).reshape(B, -1, H, W)
if self.last_stage:
x = x.mean(2).transpose(1, 2)
x = self.last_conv(x)
x = self.hardswish(x)
x = self.dropout(x)
elif not self.feat2d:
x = x.flatten(2).transpose(1, 2)
return x