Spaces:
Running
Running
import math | |
import numpy as np | |
import torch.nn as nn | |
from openrec.modeling.common import Block | |
def conv1x1(in_planes, out_planes, stride=1): | |
return nn.Conv2d(in_planes, | |
out_planes, | |
kernel_size=1, | |
stride=stride, | |
bias=False) | |
def conv3x3(in_planes, out_planes, stride=1): | |
"""3x3 convolution with padding.""" | |
return nn.Conv2d(in_planes, | |
out_planes, | |
kernel_size=3, | |
stride=stride, | |
padding=1, | |
bias=False) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(BasicBlock, self).__init__() | |
self.conv1 = conv1x1(inplanes, planes) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes, stride) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class ResNet45(nn.Module): | |
def __init__( | |
self, | |
in_channels=3, | |
block=BasicBlock, | |
layers=[3, 4, 6, 6, 3], | |
strides=[2, 1, 2, 1, 1], | |
last_stage=False, | |
out_channels=256, | |
trans_layer=0, | |
out_dim=384, | |
feat2d=True, | |
return_list=False, | |
): | |
super(ResNet45, self).__init__() | |
self.inplanes = 32 | |
self.conv1 = nn.Conv2d(in_channels, | |
32, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False) | |
self.bn1 = nn.BatchNorm2d(32) | |
self.relu = nn.ReLU(inplace=True) | |
self.layer1 = self._make_layer(block, 32, layers[0], stride=strides[0]) | |
self.layer2 = self._make_layer(block, 64, layers[1], stride=strides[1]) | |
self.layer3 = self._make_layer(block, | |
128, | |
layers[2], | |
stride=strides[2]) | |
self.layer4 = self._make_layer(block, | |
256, | |
layers[3], | |
stride=strides[3]) | |
self.layer5 = self._make_layer(block, | |
512, | |
layers[4], | |
stride=strides[4]) | |
self.out_channels = 512 | |
self.feat2d = feat2d | |
self.return_list = return_list | |
if trans_layer > 0: | |
dpr = np.linspace(0, 0.1, trans_layer) | |
blocks = [nn.Linear(512, out_dim)] + [ | |
Block(dim=out_dim, | |
num_heads=out_dim // 32, | |
mlp_ratio=4.0, | |
qkv_bias=False, | |
drop_path=dpr[i]) for i in range(trans_layer) | |
] | |
self.trans_blocks = nn.Sequential(*blocks) | |
dim = out_dim | |
self.out_channels = out_dim | |
else: | |
self.trans_blocks = None | |
dim = 512 | |
self.last_stage = last_stage | |
if last_stage: | |
self.out_channels = out_channels | |
self.last_conv = nn.Linear(dim, self.out_channels, bias=False) | |
self.hardswish = nn.Hardswish() | |
self.dropout = nn.Dropout(p=0.1) | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
m.weight.data.normal_(0, math.sqrt(2.0 / n)) | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
elif isinstance(m, nn.Linear): | |
nn.init.trunc_normal_(m.weight, mean=0, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.zeros_(m.bias) | |
def _make_layer(self, block, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d( | |
self.inplanes, | |
planes * block.expansion, | |
kernel_size=1, | |
stride=stride, | |
bias=False, | |
), | |
nn.BatchNorm2d(planes * block.expansion), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.layer1(x) | |
x2 = self.layer2(x) | |
x3 = self.layer3(x2) | |
x4 = self.layer4(x3) | |
x5 = self.layer5(x4) | |
if self.return_list: | |
return [x2, x3, x4, x5] | |
x = x5 | |
if self.trans_blocks is not None: | |
B, C, H, W = x.shape | |
x = self.trans_blocks(x.flatten(2, 3).transpose(1, 2)) | |
x = x.transpose(1, 2).reshape(B, -1, H, W) | |
if self.last_stage: | |
x = x.mean(2).transpose(1, 2) | |
x = self.last_conv(x) | |
x = self.hardswish(x) | |
x = self.dropout(x) | |
elif not self.feat2d: | |
x = x.flatten(2).transpose(1, 2) | |
return x | |