Spaces:
Running
Running
File size: 5,928 Bytes
29f689c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import math
import numpy as np
import torch.nn as nn
from openrec.modeling.common import Block
def conv1x1(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes,
out_planes,
kernel_size=1,
stride=stride,
bias=False)
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding."""
return nn.Conv2d(in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=1,
bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv1x1(inplanes, planes)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes, stride)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet45(nn.Module):
def __init__(
self,
in_channels=3,
block=BasicBlock,
layers=[3, 4, 6, 6, 3],
strides=[2, 1, 2, 1, 1],
last_stage=False,
out_channels=256,
trans_layer=0,
out_dim=384,
feat2d=True,
return_list=False,
):
super(ResNet45, self).__init__()
self.inplanes = 32
self.conv1 = nn.Conv2d(in_channels,
32,
kernel_size=3,
stride=1,
padding=1,
bias=False)
self.bn1 = nn.BatchNorm2d(32)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(block, 32, layers[0], stride=strides[0])
self.layer2 = self._make_layer(block, 64, layers[1], stride=strides[1])
self.layer3 = self._make_layer(block,
128,
layers[2],
stride=strides[2])
self.layer4 = self._make_layer(block,
256,
layers[3],
stride=strides[3])
self.layer5 = self._make_layer(block,
512,
layers[4],
stride=strides[4])
self.out_channels = 512
self.feat2d = feat2d
self.return_list = return_list
if trans_layer > 0:
dpr = np.linspace(0, 0.1, trans_layer)
blocks = [nn.Linear(512, out_dim)] + [
Block(dim=out_dim,
num_heads=out_dim // 32,
mlp_ratio=4.0,
qkv_bias=False,
drop_path=dpr[i]) for i in range(trans_layer)
]
self.trans_blocks = nn.Sequential(*blocks)
dim = out_dim
self.out_channels = out_dim
else:
self.trans_blocks = None
dim = 512
self.last_stage = last_stage
if last_stage:
self.out_channels = out_channels
self.last_conv = nn.Linear(dim, self.out_channels, bias=False)
self.hardswish = nn.Hardswish()
self.dropout = nn.Dropout(p=0.1)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2.0 / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight, mean=0, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.zeros_(m.bias)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(
self.inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
bias=False,
),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x2 = self.layer2(x)
x3 = self.layer3(x2)
x4 = self.layer4(x3)
x5 = self.layer5(x4)
if self.return_list:
return [x2, x3, x4, x5]
x = x5
if self.trans_blocks is not None:
B, C, H, W = x.shape
x = self.trans_blocks(x.flatten(2, 3).transpose(1, 2))
x = x.transpose(1, 2).reshape(B, -1, H, W)
if self.last_stage:
x = x.mean(2).transpose(1, 2)
x = self.last_conv(x)
x = self.hardswish(x)
x = self.dropout(x)
elif not self.feat2d:
x = x.flatten(2).transpose(1, 2)
return x
|