File size: 5,928 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import math

import numpy as np
import torch.nn as nn

from openrec.modeling.common import Block


def conv1x1(in_planes, out_planes, stride=1):
    return nn.Conv2d(in_planes,
                     out_planes,
                     kernel_size=1,
                     stride=stride,
                     bias=False)


def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding."""
    return nn.Conv2d(in_planes,
                     out_planes,
                     kernel_size=3,
                     stride=stride,
                     padding=1,
                     bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv1x1(inplanes, planes)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes, stride)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class ResNet45(nn.Module):

    def __init__(
        self,
        in_channels=3,
        block=BasicBlock,
        layers=[3, 4, 6, 6, 3],
        strides=[2, 1, 2, 1, 1],
        last_stage=False,
        out_channels=256,
        trans_layer=0,
        out_dim=384,
        feat2d=True,
        return_list=False,
    ):
        super(ResNet45, self).__init__()
        self.inplanes = 32
        self.conv1 = nn.Conv2d(in_channels,
                               32,
                               kernel_size=3,
                               stride=1,
                               padding=1,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(32)
        self.relu = nn.ReLU(inplace=True)

        self.layer1 = self._make_layer(block, 32, layers[0], stride=strides[0])
        self.layer2 = self._make_layer(block, 64, layers[1], stride=strides[1])
        self.layer3 = self._make_layer(block,
                                       128,
                                       layers[2],
                                       stride=strides[2])
        self.layer4 = self._make_layer(block,
                                       256,
                                       layers[3],
                                       stride=strides[3])
        self.layer5 = self._make_layer(block,
                                       512,
                                       layers[4],
                                       stride=strides[4])
        self.out_channels = 512
        self.feat2d = feat2d
        self.return_list = return_list
        if trans_layer > 0:
            dpr = np.linspace(0, 0.1, trans_layer)
            blocks = [nn.Linear(512, out_dim)] + [
                Block(dim=out_dim,
                      num_heads=out_dim // 32,
                      mlp_ratio=4.0,
                      qkv_bias=False,
                      drop_path=dpr[i]) for i in range(trans_layer)
            ]
            self.trans_blocks = nn.Sequential(*blocks)
            dim = out_dim
            self.out_channels = out_dim
        else:
            self.trans_blocks = None
            dim = 512
        self.last_stage = last_stage
        if last_stage:
            self.out_channels = out_channels
            self.last_conv = nn.Linear(dim, self.out_channels, bias=False)
            self.hardswish = nn.Hardswish()
            self.dropout = nn.Dropout(p=0.1)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2.0 / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                nn.init.trunc_normal_(m.weight, mean=0, std=0.02)
                if isinstance(m, nn.Linear) and m.bias is not None:
                    nn.init.zeros_(m.bias)

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(
                    self.inplanes,
                    planes * block.expansion,
                    kernel_size=1,
                    stride=stride,
                    bias=False,
                ),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.layer1(x)
        x2 = self.layer2(x)
        x3 = self.layer3(x2)
        x4 = self.layer4(x3)
        x5 = self.layer5(x4)

        if self.return_list:
            return [x2, x3, x4, x5]
        x = x5
        if self.trans_blocks is not None:
            B, C, H, W = x.shape
            x = self.trans_blocks(x.flatten(2, 3).transpose(1, 2))
            x = x.transpose(1, 2).reshape(B, -1, H, W)

        if self.last_stage:
            x = x.mean(2).transpose(1, 2)
            x = self.last_conv(x)
            x = self.hardswish(x)
            x = self.dropout(x)
        elif not self.feat2d:
            x = x.flatten(2).transpose(1, 2)
        return x