Spaces:
Paused
Paused
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# Load the saved model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("/home/user/app/my_finetuned_model_2/") | |
model = AutoModelForSeq2SeqLM.from_pretrained("/home/user/app/my_finetuned_model_2/") | |
# Define your inference function | |
def generate_answer(question, fortune): | |
input_text = "Question: " + question + " Fortune: " + fortune | |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True) | |
outputs = model.generate(**inputs, max_length=256, num_beams=4, early_stopping=True, repetition_penalty=2.0, no_repeat_ngram_size=3) | |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return answer | |
# Test the model with a sample input | |
sample_question = "Should I start my own business now?" | |
sample_fortune = "absence of rain causes worry." | |
print("Generated Answer:") | |
print(generate_answer(sample_question, sample_fortune)) |