hassanelmghari's picture
Update app.py
034341f verified
raw
history blame
4.76 kB
import gradio as gr
from PIL import Image
import requests
import os
from together import Together
import base64
from threading import Thread
import time
import io
# Initialize Together client
client = None
def initialize_client(api_key=None):
global client
if api_key:
os.environ["TOGETHER_API_KEY"] = api_key
if "TOGETHER_API_KEY" in os.environ:
client = Together()
else:
raise ValueError("Please provide a Together API Key")
def encode_image(image_path, max_size=(800, 800), quality=85):
with Image.open(image_path) as img:
img.thumbnail(max_size)
if img.mode in ('RGBA', 'LA'):
background = Image.new(img.mode[:-1], img.size, (255, 255, 255))
background.paste(img, mask=img.split()[-1])
img = background
buffered = io.BytesIO()
img.save(buffered, format="JPEG", quality=quality)
return base64.b64encode(buffered.getvalue()).decode('utf-8')
def bot_streaming(message, history, together_api_key, max_new_tokens=250, temperature=0.7, max_history=5):
if client is None:
try:
initialize_client(together_api_key)
except Exception as e:
yield f"Error initializing client: {str(e)}"
return
txt = message.get("text", "")
messages = []
images = []
try:
for i, msg in enumerate(history[-max_history:]):
if isinstance(msg[0], tuple):
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encode_image(msg[0][0])}"}}]})
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
elif isinstance(history[i-1][0], tuple) and isinstance(msg[0], str):
pass
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str):
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
if "files" in message and len(message["files"]) == 1:
if isinstance(message["files"][0], str): # examples
image_path = message["files"][0]
else: # regular input
image_path = message["files"][0]["path"]
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encode_image(image_path)}"}}]})
else:
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
stream = client.chat.completions.create(
model="meta-llama/Llama-Vision-Free",
messages=messages,
max_tokens=max_new_tokens,
temperature=temperature,
stream=True,
)
buffer = ""
for chunk in stream:
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content is not None:
buffer += chunk.choices[0].delta.content
time.sleep(0.01)
yield buffer
if not buffer:
yield "No response generated. Please try again."
except Exception as e:
if "Request Entity Too Large" in str(e):
yield "The image is too large. Please try with a smaller image or compress the existing one."
else:
yield f"An error occurred: {str(e)}"
with gr.Blocks() as demo:
gr.Markdown("# Meta Llama-3.2-11B-Vision-Instruct (FREE)")
gr.Markdown("Try the new Llama 3.2 11B Vision API by Meta for free through Together AI. Upload an image, and start chatting about it. Just paste in your Together AI API key and get started!")
with gr.Row():
together_api_key = gr.Textbox(
label="Together API Key",
placeholder="Enter your TOGETHER_API_KEY here",
type="password"
)
with gr.Row():
max_new_tokens = gr.Slider(
minimum=10,
maximum=500,
value=250,
step=10,
label="Maximum number of new tokens",
)
temperature = gr.Number(
value=0.7,
minimum=0,
maximum=1,
step=0.1,
label="Temperature"
)
chatbot = gr.Chatbot()
msg = gr.MultimodalTextbox(label="Enter text or upload an image")
clear = gr.Button("Clear")
msg.submit(bot_streaming, [msg, chatbot, together_api_key, max_new_tokens, temperature], chatbot)
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch(debug=True)