File size: 4,759 Bytes
7efd637
b6ef90b
 
c33dbd2
ca8dc25
5ee7ec4
b6ef90b
 
bd796ec
ca8dc25
c33dbd2
c27316e
e98c6cb
c27316e
 
 
04fcd0b
 
c27316e
 
04fcd0b
d107cdf
bd796ec
 
 
c0f2d6a
 
 
 
bd796ec
 
 
5ee7ec4
efae69e
c27316e
efae69e
 
 
 
 
c27316e
efae69e
b6ef90b
 
9dc7fb7
efae69e
 
 
 
 
 
 
 
 
 
5ee7ec4
efae69e
 
 
 
 
 
 
 
6a8b740
bd796ec
c671a2f
bd796ec
 
efae69e
bd796ec
 
 
 
 
efae69e
bd796ec
 
 
6719d1c
efae69e
 
 
20b1f08
bd796ec
 
 
 
82ee039
034341f
20b1f08
efae69e
20b1f08
efae69e
 
 
 
 
 
20b1f08
efae69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20b1f08
034341f
 
 
 
 
 
7efd637
c33dbd2
b6ef90b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import gradio as gr
from PIL import Image
import requests
import os
from together import Together
import base64
from threading import Thread
import time
import io

# Initialize Together client
client = None

def initialize_client(api_key=None):
    global client
    if api_key:
        os.environ["TOGETHER_API_KEY"] = api_key
    if "TOGETHER_API_KEY" in os.environ:
        client = Together()
    else:
        raise ValueError("Please provide a Together API Key")

def encode_image(image_path, max_size=(800, 800), quality=85):
    with Image.open(image_path) as img:
        img.thumbnail(max_size)
        if img.mode in ('RGBA', 'LA'):
            background = Image.new(img.mode[:-1], img.size, (255, 255, 255))
            background.paste(img, mask=img.split()[-1])
            img = background
        buffered = io.BytesIO()
        img.save(buffered, format="JPEG", quality=quality)
        return base64.b64encode(buffered.getvalue()).decode('utf-8')

def bot_streaming(message, history, together_api_key, max_new_tokens=250, temperature=0.7, max_history=5):
    if client is None:
        try:
            initialize_client(together_api_key)
        except Exception as e:
            yield f"Error initializing client: {str(e)}"
            return

    txt = message.get("text", "")
    messages = []
    images = []

    try:
        for i, msg in enumerate(history[-max_history:]):
            if isinstance(msg[0], tuple):
                messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encode_image(msg[0][0])}"}}]})
                messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
            elif isinstance(history[i-1][0], tuple) and isinstance(msg[0], str):
                pass
            elif isinstance(history[i-1][0], str) and isinstance(msg[0], str):
                messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
                messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})

        if "files" in message and len(message["files"]) == 1:
            if isinstance(message["files"][0], str):  # examples
                image_path = message["files"][0]
            else:  # regular input
                image_path = message["files"][0]["path"]
            messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encode_image(image_path)}"}}]})
        else:
            messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})

        stream = client.chat.completions.create(
            model="meta-llama/Llama-Vision-Free",
            messages=messages,
            max_tokens=max_new_tokens,
            temperature=temperature,
            stream=True,
        )

        buffer = ""
        for chunk in stream:
            if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content is not None:
                buffer += chunk.choices[0].delta.content
                time.sleep(0.01)
                yield buffer

        if not buffer:
            yield "No response generated. Please try again."

    except Exception as e:
        if "Request Entity Too Large" in str(e):
            yield "The image is too large. Please try with a smaller image or compress the existing one."
        else:
            yield f"An error occurred: {str(e)}"

with gr.Blocks() as demo:
    gr.Markdown("# Meta Llama-3.2-11B-Vision-Instruct (FREE)")
    gr.Markdown("Try the new Llama 3.2 11B Vision API by Meta for free through Together AI. Upload an image, and start chatting about it. Just paste in your Together AI API key and get started!")
    
    with gr.Row():
        together_api_key = gr.Textbox(
            label="Together API Key",
            placeholder="Enter your TOGETHER_API_KEY here",
            type="password"
        )
    
    with gr.Row():
        max_new_tokens = gr.Slider(
            minimum=10,
            maximum=500,
            value=250,
            step=10,
            label="Maximum number of new tokens",
        )
        temperature = gr.Number(
            value=0.7,
            minimum=0,
            maximum=1,
            step=0.1,
            label="Temperature"
        )
    
    chatbot = gr.Chatbot()
    msg = gr.MultimodalTextbox(label="Enter text or upload an image")
    clear = gr.Button("Clear")

    msg.submit(bot_streaming, [msg, chatbot, together_api_key, max_new_tokens, temperature], chatbot)
    clear.click(lambda: None, None, chatbot, queue=False)

if __name__ == "__main__":
    demo.launch(debug=True)