Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import antialiased_cnns | |
class DownLayer(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super(DownLayer, self).__init__() | |
self.layer = nn.Sequential( | |
nn.MaxPool2d(kernel_size=2, stride=1), | |
antialiased_cnns.BlurPool(in_channels, stride=2), | |
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), | |
nn.LeakyReLU(inplace=True), | |
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), | |
nn.LeakyReLU(inplace=True) | |
) | |
def forward(self, x): | |
return self.layer(x) | |
class UpLayer(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super(UpLayer, self).__init__() | |
# Conv transpose upsampling | |
self.blur_upsample = nn.Sequential( | |
nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2, stride=2, padding=0), | |
antialiased_cnns.BlurPool(out_channels, stride=1) | |
) | |
self.layer = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), | |
nn.LeakyReLU(inplace=True), | |
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), | |
nn.LeakyReLU(inplace=True) | |
) | |
def forward(self, x, skip): | |
x = self.blur_upsample(x) | |
x = torch.cat([x, skip], dim=1) # Concatenate with skip connection | |
return self.layer(x) | |
class UNet(nn.Module): | |
def __init__(self): | |
super(UNet, self).__init__() | |
self.init_conv = nn.Sequential( | |
nn.Conv2d(5, 64, kernel_size=3, padding=1), # output: 512 x 512 x 64 | |
nn.LeakyReLU(inplace=True), | |
nn.Conv2d(64, 64, kernel_size=3, padding=1), # output: 512 x 512 x 64 | |
nn.LeakyReLU(inplace=True) | |
) | |
self.down1 = DownLayer(64, 128) # output: 256 x 256 x 128 | |
self.down2 = DownLayer(128, 256) # output: 128 x 128 x 256 | |
self.down3 = DownLayer(256, 512) # output: 64 x 64 x 512 | |
self.down4 = DownLayer(512, 1024) # output: 32 x 32 x 1024 | |
self.up1 = UpLayer(1024, 512) # output: 64 x 64 x 512 | |
self.up2 = UpLayer(512, 256) # output: 128 x 128 x 256 | |
self.up3 = UpLayer(256, 128) # output: 256 x 256 x 128 | |
self.up4 = UpLayer(128, 64) # output: 512 x 512 x 64 | |
self.final_conv = nn.Conv2d(64, 3, kernel_size=1) # output: 512 x 512 x 3 | |
def forward(self, x): | |
x0 = self.init_conv(x) | |
x1 = self.down1(x0) | |
x2 = self.down2(x1) | |
x3 = self.down3(x2) | |
x4 = self.down4(x3) | |
x = self.up1(x4, x3) | |
x = self.up2(x, x2) | |
x = self.up3(x, x1) | |
x = self.up4(x, x0) | |
x = self.final_conv(x) | |
return x | |
class PatchGANDiscriminator(nn.Module): | |
def __init__(self, input_channels=3): | |
super(PatchGANDiscriminator, self).__init__() | |
self.model = nn.Sequential( | |
nn.Conv2d(input_channels, 64, kernel_size=4, stride=2, padding=1), | |
nn.LeakyReLU(0.2, inplace=True), | |
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1), | |
nn.BatchNorm2d(128), | |
nn.LeakyReLU(0.2, inplace=True), | |
nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1), | |
nn.BatchNorm2d(256), | |
nn.LeakyReLU(0.2, inplace=True), | |
nn.Conv2d(256, 1, kernel_size=4, stride=1, padding=1) | |
# Output layer with 1 channel for binary classification | |
) | |
def forward(self, x): | |
return self.model(x) | |