import torch import torch.nn as nn import antialiased_cnns class DownLayer(nn.Module): def __init__(self, in_channels, out_channels): super(DownLayer, self).__init__() self.layer = nn.Sequential( nn.MaxPool2d(kernel_size=2, stride=1), antialiased_cnns.BlurPool(in_channels, stride=2), nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.LeakyReLU(inplace=True), nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), nn.LeakyReLU(inplace=True) ) def forward(self, x): return self.layer(x) class UpLayer(nn.Module): def __init__(self, in_channels, out_channels): super(UpLayer, self).__init__() # Conv transpose upsampling self.blur_upsample = nn.Sequential( nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2, stride=2, padding=0), antialiased_cnns.BlurPool(out_channels, stride=1) ) self.layer = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.LeakyReLU(inplace=True), nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), nn.LeakyReLU(inplace=True) ) def forward(self, x, skip): x = self.blur_upsample(x) x = torch.cat([x, skip], dim=1) # Concatenate with skip connection return self.layer(x) class UNet(nn.Module): def __init__(self): super(UNet, self).__init__() self.init_conv = nn.Sequential( nn.Conv2d(5, 64, kernel_size=3, padding=1), # output: 512 x 512 x 64 nn.LeakyReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3, padding=1), # output: 512 x 512 x 64 nn.LeakyReLU(inplace=True) ) self.down1 = DownLayer(64, 128) # output: 256 x 256 x 128 self.down2 = DownLayer(128, 256) # output: 128 x 128 x 256 self.down3 = DownLayer(256, 512) # output: 64 x 64 x 512 self.down4 = DownLayer(512, 1024) # output: 32 x 32 x 1024 self.up1 = UpLayer(1024, 512) # output: 64 x 64 x 512 self.up2 = UpLayer(512, 256) # output: 128 x 128 x 256 self.up3 = UpLayer(256, 128) # output: 256 x 256 x 128 self.up4 = UpLayer(128, 64) # output: 512 x 512 x 64 self.final_conv = nn.Conv2d(64, 3, kernel_size=1) # output: 512 x 512 x 3 def forward(self, x): x0 = self.init_conv(x) x1 = self.down1(x0) x2 = self.down2(x1) x3 = self.down3(x2) x4 = self.down4(x3) x = self.up1(x4, x3) x = self.up2(x, x2) x = self.up3(x, x1) x = self.up4(x, x0) x = self.final_conv(x) return x class PatchGANDiscriminator(nn.Module): def __init__(self, input_channels=3): super(PatchGANDiscriminator, self).__init__() self.model = nn.Sequential( nn.Conv2d(input_channels, 64, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(256, 1, kernel_size=4, stride=1, padding=1) # Output layer with 1 channel for binary classification ) def forward(self, x): return self.model(x)