throaway2854's picture
Update app.py
00039a6 verified
raw
history blame
16.1 kB
import gradio as gr
import os
import zipfile
import json
from io import BytesIO
import base64
from PIL import Image
import uuid
import tempfile
import numpy as np
def save_dataset_to_zip(dataset_name, dataset):
# Create a temporary directory
temp_dir = tempfile.mkdtemp()
dataset_path = os.path.join(temp_dir, dataset_name)
os.makedirs(dataset_path, exist_ok=True)
images_dir = os.path.join(dataset_path, 'images')
os.makedirs(images_dir, exist_ok=True)
annotations = []
for idx, entry in enumerate(dataset):
image_data = entry['image']
prompt = entry['prompt']
# Save image to images directory
image_filename = f"{uuid.uuid4().hex}.png"
image_path = os.path.join(images_dir, image_filename)
# Decode the base64 image data
image = Image.open(BytesIO(base64.b64decode(image_data.split(",")[1])))
image.save(image_path)
# Add annotation
annotations.append({
'file_name': os.path.join('images', image_filename),
'text': prompt
})
# Save annotations to JSONL file
annotations_path = os.path.join(dataset_path, 'annotations.jsonl')
with open(annotations_path, 'w') as f:
for ann in annotations:
f.write(json.dumps(ann) + '\n')
# Create a zip file with the dataset_name as the top-level folder
zip_buffer = BytesIO()
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, dirs, files in os.walk(dataset_path):
for file in files:
abs_file = os.path.join(root, file)
rel_file = os.path.relpath(abs_file, temp_dir)
zipf.write(abs_file, rel_file)
zip_buffer.seek(0)
return zip_buffer
def load_dataset_from_zip(zip_file_path):
temp_dir = tempfile.mkdtemp()
try:
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(temp_dir)
# Get dataset name from zip file name
dataset_name_guess = os.path.splitext(os.path.basename(zip_file_path))[0]
dataset_path = os.path.join(temp_dir, dataset_name_guess)
if os.path.exists(dataset_path):
dataset_name = dataset_name_guess
else:
# If the dataset_name directory doesn't exist, try to find the top-level directory
entries = [entry for entry in os.listdir(temp_dir) if os.path.isdir(os.path.join(temp_dir, entry))]
if entries:
dataset_name = entries[0]
dataset_path = os.path.join(temp_dir, dataset_name)
else:
# Files are directly in temp_dir
dataset_name = dataset_name_guess
dataset_path = temp_dir
images_dir = os.path.join(dataset_path, 'images')
annotations_path = os.path.join(dataset_path, 'annotations.jsonl')
dataset = []
if os.path.exists(annotations_path):
with open(annotations_path, 'r') as f:
for line in f:
ann = json.loads(line)
file_name = ann['file_name']
prompt = ann['text']
image_path = os.path.join(dataset_path, file_name)
# Read image and convert to base64
with open(image_path, 'rb') as img_f:
image_bytes = img_f.read()
encoded = base64.b64encode(image_bytes).decode()
mime_type = "image/png"
image_data = f"data:{mime_type};base64,{encoded}"
dataset.append({
'image': image_data,
'prompt': prompt
})
else:
# If annotations file not found
return None, []
return dataset_name, dataset
except Exception as e:
print(f"Error loading dataset: {e}")
return None, []
def display_dataset_html(dataset, page_number=0, items_per_page=5):
if dataset:
start_idx = page_number * items_per_page
end_idx = start_idx + items_per_page
dataset_slice = dataset[start_idx:end_idx]
total_pages = (len(dataset) - 1) // items_per_page + 1
html_content = '''
<div style="display: flex; overflow-x: auto; padding: 10px; border: 1px solid #ccc;">
'''
for idx_offset, entry in enumerate(dataset_slice):
idx = start_idx + idx_offset
image_data = entry['image']
prompt = entry['prompt']
html_content += f"""
<div style="display: flex; flex-direction: column; align-items: center; margin-right: 20px;">
<div style="margin-bottom: 5px;">{idx}</div>
<img src="{image_data}" alt="Image {idx}" style="max-height: 150px;"/>
<div style="max-width: 150px; word-wrap: break-word; text-align: center;">{prompt}</div>
</div>
"""
html_content += '</div>'
return html_content
else:
return "<div>No entries in dataset.</div>"
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 20px;'>Dataset Builder</h1>")
datasets = gr.State({})
current_dataset_name = gr.State("")
current_page_number = gr.State(0)
dataset_selector = gr.Dropdown(label="Select Dataset", interactive=True)
entry_selector = gr.Dropdown(label="Select Entry to Edit/Delete")
message_box = gr.Textbox(interactive=False, label="Message")
with gr.Tab("Create / Upload Dataset"):
with gr.Row():
with gr.Column():
gr.Markdown("### Create a New Dataset")
dataset_name_input = gr.Textbox(label="New Dataset Name")
create_button = gr.Button("Create Dataset")
with gr.Column():
gr.Markdown("### Upload Existing Dataset")
upload_input = gr.File(label="Upload Dataset Zip", type="filepath", file_types=['.zip'])
upload_button = gr.Button("Upload Dataset")
def create_dataset(name, datasets):
if not name:
return gr.update(), "Please enter a dataset name."
if name in datasets:
return gr.update(), f"Dataset '{name}' already exists."
datasets[name] = []
return gr.update(choices=list(datasets.keys()), value=name), f"Dataset '{name}' created."
create_button.click(
create_dataset,
inputs=[dataset_name_input, datasets],
outputs=[dataset_selector, message_box]
)
def upload_dataset(zip_file_path, datasets):
if not zip_file_path:
return gr.update(), "Please upload a zip file."
dataset_name, dataset = load_dataset_from_zip(zip_file_path)
if dataset_name is None:
return gr.update(), "Failed to load dataset from zip file."
if dataset_name in datasets:
return gr.update(), f"Dataset '{dataset_name}' already exists."
datasets[dataset_name] = dataset
return gr.update(choices=list(datasets.keys()), value=dataset_name), f"Dataset '{dataset_name}' uploaded."
upload_button.click(
upload_dataset,
inputs=[upload_input, datasets],
outputs=[dataset_selector, message_box]
)
def select_dataset(dataset_name, datasets):
if dataset_name in datasets:
dataset = datasets[dataset_name]
html_content = display_dataset_html(dataset, page_number=0)
# Update entry_selector options
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
return dataset_name, 0, gr.update(value=html_content), gr.update(choices=entry_options), ""
else:
return "", 0, gr.update(value="<div>Select a dataset.</div>"), gr.update(choices=[]), ""
dataset_selector.change(
select_dataset,
inputs=[dataset_selector, datasets],
outputs=[current_dataset_name, current_page_number, gr.HTML(), entry_selector, message_box]
)
with gr.Tab("Add Entry"):
with gr.Row():
image_input = gr.Image(label="Upload Image", type="numpy")
prompt_input = gr.Textbox(label="Prompt")
add_button = gr.Button("Add Entry")
def add_entry(image_data, prompt, current_dataset_name, datasets):
if not current_dataset_name:
return datasets, gr.update(), gr.update(), gr.update(), "No dataset selected."
if image_data is None or not prompt:
return datasets, gr.update(), gr.update(), gr.update(), "Please provide both an image and a prompt."
# Convert image_data to base64
image = Image.fromarray(image_data.astype('uint8'))
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
img_data = f"data:image/png;base64,{img_str}"
datasets[current_dataset_name].append({'image': img_data, 'prompt': prompt})
dataset = datasets[current_dataset_name]
# Reset page number to 0 when a new entry is added
page_number = 0
html_content = display_dataset_html(dataset, page_number=page_number)
# Update entry_selector options
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
return datasets, page_number, gr.update(value=html_content), gr.update(choices=entry_options), f"Entry added to dataset '{current_dataset_name}'."
add_button.click(
add_entry,
inputs=[image_input, prompt_input, current_dataset_name, datasets],
outputs=[datasets, current_page_number, gr.HTML(), entry_selector, message_box]
)
with gr.Tab("Edit / Delete Entry"):
with gr.Column():
selected_image = gr.Image(label="Selected Image", interactive=False, type="numpy")
selected_prompt = gr.Textbox(label="Current Prompt", interactive=False)
new_prompt_input = gr.Textbox(label="New Prompt (for Edit)")
with gr.Row():
edit_button = gr.Button("Edit Entry")
delete_button = gr.Button("Delete Entry")
def update_selected_entry(entry_option, current_dataset_name, datasets):
if not current_dataset_name or not entry_option:
return gr.update(), gr.update()
index = int(entry_option.split(":")[0])
entry = datasets[current_dataset_name][index]
image_data = entry['image']
prompt = entry['prompt']
# Decode base64 image data to numpy array
image_bytes = base64.b64decode(image_data.split(",")[1])
image = Image.open(BytesIO(image_bytes))
image_array = np.array(image)
return gr.update(value=image_array), gr.update(value=prompt)
entry_selector.change(
update_selected_entry,
inputs=[entry_selector, current_dataset_name, datasets],
outputs=[selected_image, selected_prompt]
)
def edit_entry(entry_option, new_prompt, current_dataset_name, datasets, current_page_number):
if not current_dataset_name:
return datasets, gr.update(), gr.update(), gr.update(), gr.update(), "No dataset selected."
if not entry_option or not new_prompt.strip():
return datasets, gr.update(), gr.update(), gr.update(), gr.update(), "Please select an entry and provide a new prompt."
index = int(entry_option.split(":")[0])
datasets[current_dataset_name][index]['prompt'] = new_prompt
dataset = datasets[current_dataset_name]
html_content = display_dataset_html(dataset, page_number=current_page_number)
# Update entry_selector options
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
return datasets, gr.update(value=html_content), gr.update(choices=entry_options), gr.update(value=""), gr.update(), f"Entry {index} updated."
edit_button.click(
edit_entry,
inputs=[entry_selector, new_prompt_input, current_dataset_name, datasets, current_page_number],
outputs=[datasets, gr.HTML(), entry_selector, new_prompt_input, message_box]
)
def delete_entry(entry_option, current_dataset_name, datasets, current_page_number):
if not current_dataset_name:
return datasets, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), "No dataset selected."
if not entry_option:
return datasets, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), "Please select an entry to delete."
index = int(entry_option.split(":")[0])
del datasets[current_dataset_name][index]
dataset = datasets[current_dataset_name]
html_content = display_dataset_html(dataset, page_number=current_page_number)
# Update entry_selector options
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
return datasets, gr.update(value=html_content), gr.update(choices=entry_options), gr.update(value=None), gr.update(value=""), message_box, f"Entry {index} deleted."
delete_button.click(
delete_entry,
inputs=[entry_selector, current_dataset_name, datasets, current_page_number],
outputs=[datasets, gr.HTML(), entry_selector, selected_image, selected_prompt, message_box]
)
with gr.Tab("Download Dataset"):
download_button = gr.Button("Download Dataset")
download_output = gr.File(label="Download Zip", interactive=False)
def download_dataset(current_dataset_name, datasets):
if not current_dataset_name:
return None, "No dataset selected."
if not datasets[current_dataset_name]:
return None, "Dataset is empty."
zip_buffer = save_dataset_to_zip(current_dataset_name, datasets[current_dataset_name])
# Write zip_buffer to a temporary file
temp_dir = tempfile.mkdtemp()
zip_path = os.path.join(temp_dir, f"{current_dataset_name}.zip")
with open(zip_path, 'wb') as f:
f.write(zip_buffer.getvalue())
return zip_path, f"Dataset '{current_dataset_name}' is ready for download."
download_button.click(
download_dataset,
inputs=[current_dataset_name, datasets],
outputs=[download_output, message_box]
)
# Dataset Viewer and Pagination Controls at the Bottom
with gr.Column():
gr.Markdown("### Dataset Viewer")
dataset_html = gr.HTML()
with gr.Row():
prev_button = gr.Button("Previous Page")
next_button = gr.Button("Next Page")
def change_page(action, current_page_number, datasets, current_dataset_name):
if not current_dataset_name:
return current_page_number, gr.update(), "No dataset selected."
dataset = datasets[current_dataset_name]
total_pages = (len(dataset) - 1) // 5 + 1
if action == "next":
if current_page_number + 1 < total_pages:
current_page_number += 1
elif action == "prev":
if current_page_number > 0:
current_page_number -= 1
html_content = display_dataset_html(dataset, page_number=current_page_number)
return current_page_number, gr.update(value=html_content), ""
prev_button.click(
change_page,
inputs=["prev", current_page_number, datasets, current_dataset_name],
outputs=[current_page_number, dataset_html, message_box]
)
next_button.click(
change_page,
inputs=["next", current_page_number, datasets, current_dataset_name],
outputs=[current_page_number, dataset_html, message_box]
)
# Initialize dataset_selector and entry_selector
def initialize_components(datasets):
return gr.update(choices=list(datasets.keys())), gr.update(choices=[])
demo.load(
initialize_components,
inputs=[datasets],
outputs=[dataset_selector, entry_selector]
)
demo.launch()