File size: 16,145 Bytes
79b274c e377d5f 79b274c f21bf1a 79ea3d6 f21bf1a e500026 c80f72f e500026 c80f72f e500026 c80f72f e500026 c80f72f e500026 c80f72f e500026 c80f72f e500026 c80f72f e500026 f21bf1a ebe9224 e500026 c80f72f ebe9224 c80f72f ebe9224 c80f72f f21bf1a 00039a6 e500026 00039a6 e500026 00039a6 e500026 00039a6 e500026 f21bf1a 79b274c f21bf1a 00039a6 f21bf1a c80f72f f21bf1a e500026 7350384 e500026 f21bf1a e500026 f21bf1a ebe9224 e500026 ebe9224 c80f72f e500026 f21bf1a 00039a6 79ea3d6 00039a6 f21bf1a 00039a6 f21bf1a 00039a6 f21bf1a e500026 abf11ff e500026 f21bf1a 00039a6 f21bf1a 00039a6 79ea3d6 00039a6 79ea3d6 00039a6 f21bf1a 00039a6 f21bf1a ae270b9 ebe9224 ae270b9 f21bf1a 79ea3d6 ae270b9 79ea3d6 00039a6 f21bf1a 00039a6 79ea3d6 00039a6 79ea3d6 00039a6 79ea3d6 00039a6 f21bf1a 00039a6 f21bf1a 00039a6 f21bf1a 00039a6 79ea3d6 00039a6 79ea3d6 00039a6 79ea3d6 00039a6 f21bf1a 00039a6 f21bf1a abf11ff f21bf1a 79ea3d6 f21bf1a abf11ff f21bf1a 00039a6 79ea3d6 f21bf1a 79ea3d6 208758b 79ea3d6 f21bf1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
import gradio as gr
import os
import zipfile
import json
from io import BytesIO
import base64
from PIL import Image
import uuid
import tempfile
import numpy as np
def save_dataset_to_zip(dataset_name, dataset):
# Create a temporary directory
temp_dir = tempfile.mkdtemp()
dataset_path = os.path.join(temp_dir, dataset_name)
os.makedirs(dataset_path, exist_ok=True)
images_dir = os.path.join(dataset_path, 'images')
os.makedirs(images_dir, exist_ok=True)
annotations = []
for idx, entry in enumerate(dataset):
image_data = entry['image']
prompt = entry['prompt']
# Save image to images directory
image_filename = f"{uuid.uuid4().hex}.png"
image_path = os.path.join(images_dir, image_filename)
# Decode the base64 image data
image = Image.open(BytesIO(base64.b64decode(image_data.split(",")[1])))
image.save(image_path)
# Add annotation
annotations.append({
'file_name': os.path.join('images', image_filename),
'text': prompt
})
# Save annotations to JSONL file
annotations_path = os.path.join(dataset_path, 'annotations.jsonl')
with open(annotations_path, 'w') as f:
for ann in annotations:
f.write(json.dumps(ann) + '\n')
# Create a zip file with the dataset_name as the top-level folder
zip_buffer = BytesIO()
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, dirs, files in os.walk(dataset_path):
for file in files:
abs_file = os.path.join(root, file)
rel_file = os.path.relpath(abs_file, temp_dir)
zipf.write(abs_file, rel_file)
zip_buffer.seek(0)
return zip_buffer
def load_dataset_from_zip(zip_file_path):
temp_dir = tempfile.mkdtemp()
try:
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(temp_dir)
# Get dataset name from zip file name
dataset_name_guess = os.path.splitext(os.path.basename(zip_file_path))[0]
dataset_path = os.path.join(temp_dir, dataset_name_guess)
if os.path.exists(dataset_path):
dataset_name = dataset_name_guess
else:
# If the dataset_name directory doesn't exist, try to find the top-level directory
entries = [entry for entry in os.listdir(temp_dir) if os.path.isdir(os.path.join(temp_dir, entry))]
if entries:
dataset_name = entries[0]
dataset_path = os.path.join(temp_dir, dataset_name)
else:
# Files are directly in temp_dir
dataset_name = dataset_name_guess
dataset_path = temp_dir
images_dir = os.path.join(dataset_path, 'images')
annotations_path = os.path.join(dataset_path, 'annotations.jsonl')
dataset = []
if os.path.exists(annotations_path):
with open(annotations_path, 'r') as f:
for line in f:
ann = json.loads(line)
file_name = ann['file_name']
prompt = ann['text']
image_path = os.path.join(dataset_path, file_name)
# Read image and convert to base64
with open(image_path, 'rb') as img_f:
image_bytes = img_f.read()
encoded = base64.b64encode(image_bytes).decode()
mime_type = "image/png"
image_data = f"data:{mime_type};base64,{encoded}"
dataset.append({
'image': image_data,
'prompt': prompt
})
else:
# If annotations file not found
return None, []
return dataset_name, dataset
except Exception as e:
print(f"Error loading dataset: {e}")
return None, []
def display_dataset_html(dataset, page_number=0, items_per_page=5):
if dataset:
start_idx = page_number * items_per_page
end_idx = start_idx + items_per_page
dataset_slice = dataset[start_idx:end_idx]
total_pages = (len(dataset) - 1) // items_per_page + 1
html_content = '''
<div style="display: flex; overflow-x: auto; padding: 10px; border: 1px solid #ccc;">
'''
for idx_offset, entry in enumerate(dataset_slice):
idx = start_idx + idx_offset
image_data = entry['image']
prompt = entry['prompt']
html_content += f"""
<div style="display: flex; flex-direction: column; align-items: center; margin-right: 20px;">
<div style="margin-bottom: 5px;">{idx}</div>
<img src="{image_data}" alt="Image {idx}" style="max-height: 150px;"/>
<div style="max-width: 150px; word-wrap: break-word; text-align: center;">{prompt}</div>
</div>
"""
html_content += '</div>'
return html_content
else:
return "<div>No entries in dataset.</div>"
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 20px;'>Dataset Builder</h1>")
datasets = gr.State({})
current_dataset_name = gr.State("")
current_page_number = gr.State(0)
dataset_selector = gr.Dropdown(label="Select Dataset", interactive=True)
entry_selector = gr.Dropdown(label="Select Entry to Edit/Delete")
message_box = gr.Textbox(interactive=False, label="Message")
with gr.Tab("Create / Upload Dataset"):
with gr.Row():
with gr.Column():
gr.Markdown("### Create a New Dataset")
dataset_name_input = gr.Textbox(label="New Dataset Name")
create_button = gr.Button("Create Dataset")
with gr.Column():
gr.Markdown("### Upload Existing Dataset")
upload_input = gr.File(label="Upload Dataset Zip", type="filepath", file_types=['.zip'])
upload_button = gr.Button("Upload Dataset")
def create_dataset(name, datasets):
if not name:
return gr.update(), "Please enter a dataset name."
if name in datasets:
return gr.update(), f"Dataset '{name}' already exists."
datasets[name] = []
return gr.update(choices=list(datasets.keys()), value=name), f"Dataset '{name}' created."
create_button.click(
create_dataset,
inputs=[dataset_name_input, datasets],
outputs=[dataset_selector, message_box]
)
def upload_dataset(zip_file_path, datasets):
if not zip_file_path:
return gr.update(), "Please upload a zip file."
dataset_name, dataset = load_dataset_from_zip(zip_file_path)
if dataset_name is None:
return gr.update(), "Failed to load dataset from zip file."
if dataset_name in datasets:
return gr.update(), f"Dataset '{dataset_name}' already exists."
datasets[dataset_name] = dataset
return gr.update(choices=list(datasets.keys()), value=dataset_name), f"Dataset '{dataset_name}' uploaded."
upload_button.click(
upload_dataset,
inputs=[upload_input, datasets],
outputs=[dataset_selector, message_box]
)
def select_dataset(dataset_name, datasets):
if dataset_name in datasets:
dataset = datasets[dataset_name]
html_content = display_dataset_html(dataset, page_number=0)
# Update entry_selector options
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
return dataset_name, 0, gr.update(value=html_content), gr.update(choices=entry_options), ""
else:
return "", 0, gr.update(value="<div>Select a dataset.</div>"), gr.update(choices=[]), ""
dataset_selector.change(
select_dataset,
inputs=[dataset_selector, datasets],
outputs=[current_dataset_name, current_page_number, gr.HTML(), entry_selector, message_box]
)
with gr.Tab("Add Entry"):
with gr.Row():
image_input = gr.Image(label="Upload Image", type="numpy")
prompt_input = gr.Textbox(label="Prompt")
add_button = gr.Button("Add Entry")
def add_entry(image_data, prompt, current_dataset_name, datasets):
if not current_dataset_name:
return datasets, gr.update(), gr.update(), gr.update(), "No dataset selected."
if image_data is None or not prompt:
return datasets, gr.update(), gr.update(), gr.update(), "Please provide both an image and a prompt."
# Convert image_data to base64
image = Image.fromarray(image_data.astype('uint8'))
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
img_data = f"data:image/png;base64,{img_str}"
datasets[current_dataset_name].append({'image': img_data, 'prompt': prompt})
dataset = datasets[current_dataset_name]
# Reset page number to 0 when a new entry is added
page_number = 0
html_content = display_dataset_html(dataset, page_number=page_number)
# Update entry_selector options
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
return datasets, page_number, gr.update(value=html_content), gr.update(choices=entry_options), f"Entry added to dataset '{current_dataset_name}'."
add_button.click(
add_entry,
inputs=[image_input, prompt_input, current_dataset_name, datasets],
outputs=[datasets, current_page_number, gr.HTML(), entry_selector, message_box]
)
with gr.Tab("Edit / Delete Entry"):
with gr.Column():
selected_image = gr.Image(label="Selected Image", interactive=False, type="numpy")
selected_prompt = gr.Textbox(label="Current Prompt", interactive=False)
new_prompt_input = gr.Textbox(label="New Prompt (for Edit)")
with gr.Row():
edit_button = gr.Button("Edit Entry")
delete_button = gr.Button("Delete Entry")
def update_selected_entry(entry_option, current_dataset_name, datasets):
if not current_dataset_name or not entry_option:
return gr.update(), gr.update()
index = int(entry_option.split(":")[0])
entry = datasets[current_dataset_name][index]
image_data = entry['image']
prompt = entry['prompt']
# Decode base64 image data to numpy array
image_bytes = base64.b64decode(image_data.split(",")[1])
image = Image.open(BytesIO(image_bytes))
image_array = np.array(image)
return gr.update(value=image_array), gr.update(value=prompt)
entry_selector.change(
update_selected_entry,
inputs=[entry_selector, current_dataset_name, datasets],
outputs=[selected_image, selected_prompt]
)
def edit_entry(entry_option, new_prompt, current_dataset_name, datasets, current_page_number):
if not current_dataset_name:
return datasets, gr.update(), gr.update(), gr.update(), gr.update(), "No dataset selected."
if not entry_option or not new_prompt.strip():
return datasets, gr.update(), gr.update(), gr.update(), gr.update(), "Please select an entry and provide a new prompt."
index = int(entry_option.split(":")[0])
datasets[current_dataset_name][index]['prompt'] = new_prompt
dataset = datasets[current_dataset_name]
html_content = display_dataset_html(dataset, page_number=current_page_number)
# Update entry_selector options
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
return datasets, gr.update(value=html_content), gr.update(choices=entry_options), gr.update(value=""), gr.update(), f"Entry {index} updated."
edit_button.click(
edit_entry,
inputs=[entry_selector, new_prompt_input, current_dataset_name, datasets, current_page_number],
outputs=[datasets, gr.HTML(), entry_selector, new_prompt_input, message_box]
)
def delete_entry(entry_option, current_dataset_name, datasets, current_page_number):
if not current_dataset_name:
return datasets, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), "No dataset selected."
if not entry_option:
return datasets, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), "Please select an entry to delete."
index = int(entry_option.split(":")[0])
del datasets[current_dataset_name][index]
dataset = datasets[current_dataset_name]
html_content = display_dataset_html(dataset, page_number=current_page_number)
# Update entry_selector options
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
return datasets, gr.update(value=html_content), gr.update(choices=entry_options), gr.update(value=None), gr.update(value=""), message_box, f"Entry {index} deleted."
delete_button.click(
delete_entry,
inputs=[entry_selector, current_dataset_name, datasets, current_page_number],
outputs=[datasets, gr.HTML(), entry_selector, selected_image, selected_prompt, message_box]
)
with gr.Tab("Download Dataset"):
download_button = gr.Button("Download Dataset")
download_output = gr.File(label="Download Zip", interactive=False)
def download_dataset(current_dataset_name, datasets):
if not current_dataset_name:
return None, "No dataset selected."
if not datasets[current_dataset_name]:
return None, "Dataset is empty."
zip_buffer = save_dataset_to_zip(current_dataset_name, datasets[current_dataset_name])
# Write zip_buffer to a temporary file
temp_dir = tempfile.mkdtemp()
zip_path = os.path.join(temp_dir, f"{current_dataset_name}.zip")
with open(zip_path, 'wb') as f:
f.write(zip_buffer.getvalue())
return zip_path, f"Dataset '{current_dataset_name}' is ready for download."
download_button.click(
download_dataset,
inputs=[current_dataset_name, datasets],
outputs=[download_output, message_box]
)
# Dataset Viewer and Pagination Controls at the Bottom
with gr.Column():
gr.Markdown("### Dataset Viewer")
dataset_html = gr.HTML()
with gr.Row():
prev_button = gr.Button("Previous Page")
next_button = gr.Button("Next Page")
def change_page(action, current_page_number, datasets, current_dataset_name):
if not current_dataset_name:
return current_page_number, gr.update(), "No dataset selected."
dataset = datasets[current_dataset_name]
total_pages = (len(dataset) - 1) // 5 + 1
if action == "next":
if current_page_number + 1 < total_pages:
current_page_number += 1
elif action == "prev":
if current_page_number > 0:
current_page_number -= 1
html_content = display_dataset_html(dataset, page_number=current_page_number)
return current_page_number, gr.update(value=html_content), ""
prev_button.click(
change_page,
inputs=["prev", current_page_number, datasets, current_dataset_name],
outputs=[current_page_number, dataset_html, message_box]
)
next_button.click(
change_page,
inputs=["next", current_page_number, datasets, current_dataset_name],
outputs=[current_page_number, dataset_html, message_box]
)
# Initialize dataset_selector and entry_selector
def initialize_components(datasets):
return gr.update(choices=list(datasets.keys())), gr.update(choices=[])
demo.load(
initialize_components,
inputs=[datasets],
outputs=[dataset_selector, entry_selector]
)
demo.launch() |