Update app.py
Browse files
app.py
CHANGED
@@ -16,64 +16,97 @@ def save_dataset_to_zip(dataset_name, dataset):
|
|
16 |
os.makedirs(dataset_path, exist_ok=True)
|
17 |
images_dir = os.path.join(dataset_path, 'images')
|
18 |
os.makedirs(images_dir, exist_ok=True)
|
|
|
19 |
annotations = []
|
20 |
for idx, entry in enumerate(dataset):
|
21 |
image_data = entry['image']
|
22 |
prompt = entry['prompt']
|
|
|
23 |
# Save image to images directory
|
24 |
image_filename = f"{uuid.uuid4().hex}.png"
|
25 |
image_path = os.path.join(images_dir, image_filename)
|
26 |
# Decode the base64 image data
|
27 |
image = Image.open(BytesIO(base64.b64decode(image_data.split(",")[1])))
|
28 |
image.save(image_path)
|
|
|
29 |
# Add annotation
|
30 |
annotations.append({
|
31 |
'file_name': os.path.join('images', image_filename),
|
32 |
'text': prompt
|
33 |
})
|
|
|
34 |
# Save annotations to JSONL file
|
35 |
annotations_path = os.path.join(dataset_path, 'annotations.jsonl')
|
36 |
with open(annotations_path, 'w') as f:
|
37 |
for ann in annotations:
|
38 |
f.write(json.dumps(ann) + '\n')
|
39 |
-
|
|
|
40 |
zip_buffer = BytesIO()
|
41 |
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
42 |
for root, dirs, files in os.walk(dataset_path):
|
43 |
for file in files:
|
44 |
abs_file = os.path.join(root, file)
|
45 |
-
rel_file = os.path.relpath(abs_file,
|
46 |
zipf.write(abs_file, rel_file)
|
|
|
47 |
zip_buffer.seek(0)
|
48 |
return zip_buffer
|
49 |
|
50 |
def load_dataset_from_zip(zip_file):
|
51 |
temp_dir = tempfile.mkdtemp()
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
def display_dataset_html(dataset):
|
79 |
if dataset:
|
@@ -97,7 +130,7 @@ with gr.Blocks() as demo:
|
|
97 |
datasets = gr.State({})
|
98 |
current_dataset_name = gr.State("")
|
99 |
dataset_selector = gr.Dropdown(label="Select Dataset", interactive=True)
|
100 |
-
entry_selector = gr.Dropdown(label="Select Entry to Edit/Delete")
|
101 |
dataset_html = gr.HTML()
|
102 |
message_box = gr.Textbox(interactive=False, label="Message")
|
103 |
|
@@ -109,7 +142,7 @@ with gr.Blocks() as demo:
|
|
109 |
create_button = gr.Button("Create Dataset")
|
110 |
with gr.Column():
|
111 |
gr.Markdown("### Upload Existing Dataset")
|
112 |
-
upload_input = gr.File(label="Upload Dataset Zip",
|
113 |
upload_button = gr.Button("Upload Dataset")
|
114 |
|
115 |
def create_dataset(name, datasets):
|
@@ -130,6 +163,8 @@ with gr.Blocks() as demo:
|
|
130 |
if zip_file is None:
|
131 |
return gr.update(), "Please upload a zip file."
|
132 |
dataset_name, dataset = load_dataset_from_zip(zip_file)
|
|
|
|
|
133 |
if dataset_name in datasets:
|
134 |
return gr.update(), f"Dataset '{dataset_name}' already exists."
|
135 |
datasets[dataset_name] = dataset
|
|
|
16 |
os.makedirs(dataset_path, exist_ok=True)
|
17 |
images_dir = os.path.join(dataset_path, 'images')
|
18 |
os.makedirs(images_dir, exist_ok=True)
|
19 |
+
|
20 |
annotations = []
|
21 |
for idx, entry in enumerate(dataset):
|
22 |
image_data = entry['image']
|
23 |
prompt = entry['prompt']
|
24 |
+
|
25 |
# Save image to images directory
|
26 |
image_filename = f"{uuid.uuid4().hex}.png"
|
27 |
image_path = os.path.join(images_dir, image_filename)
|
28 |
# Decode the base64 image data
|
29 |
image = Image.open(BytesIO(base64.b64decode(image_data.split(",")[1])))
|
30 |
image.save(image_path)
|
31 |
+
|
32 |
# Add annotation
|
33 |
annotations.append({
|
34 |
'file_name': os.path.join('images', image_filename),
|
35 |
'text': prompt
|
36 |
})
|
37 |
+
|
38 |
# Save annotations to JSONL file
|
39 |
annotations_path = os.path.join(dataset_path, 'annotations.jsonl')
|
40 |
with open(annotations_path, 'w') as f:
|
41 |
for ann in annotations:
|
42 |
f.write(json.dumps(ann) + '\n')
|
43 |
+
|
44 |
+
# Create a zip file with the dataset_name as the top-level folder
|
45 |
zip_buffer = BytesIO()
|
46 |
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
47 |
for root, dirs, files in os.walk(dataset_path):
|
48 |
for file in files:
|
49 |
abs_file = os.path.join(root, file)
|
50 |
+
rel_file = os.path.relpath(abs_file, temp_dir)
|
51 |
zipf.write(abs_file, rel_file)
|
52 |
+
|
53 |
zip_buffer.seek(0)
|
54 |
return zip_buffer
|
55 |
|
56 |
def load_dataset_from_zip(zip_file):
|
57 |
temp_dir = tempfile.mkdtemp()
|
58 |
+
try:
|
59 |
+
with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
|
60 |
+
zip_ref.extractall(temp_dir)
|
61 |
+
|
62 |
+
# Get dataset name from zip file name
|
63 |
+
dataset_name_guess = os.path.splitext(os.path.basename(zip_file.name))[0]
|
64 |
+
dataset_path = os.path.join(temp_dir, dataset_name_guess)
|
65 |
+
|
66 |
+
if os.path.exists(dataset_path):
|
67 |
+
dataset_name = dataset_name_guess
|
68 |
+
else:
|
69 |
+
# If the dataset_name directory doesn't exist, try to find the top-level directory
|
70 |
+
entries = [entry for entry in os.listdir(temp_dir) if os.path.isdir(os.path.join(temp_dir, entry))]
|
71 |
+
if entries:
|
72 |
+
dataset_name = entries[0]
|
73 |
+
dataset_path = os.path.join(temp_dir, dataset_name)
|
74 |
+
else:
|
75 |
+
# Files are directly in temp_dir
|
76 |
+
dataset_name = dataset_name_guess
|
77 |
+
dataset_path = temp_dir
|
78 |
+
|
79 |
+
images_dir = os.path.join(dataset_path, 'images')
|
80 |
+
annotations_path = os.path.join(dataset_path, 'annotations.jsonl')
|
81 |
+
dataset = []
|
82 |
+
|
83 |
+
if os.path.exists(annotations_path):
|
84 |
+
with open(annotations_path, 'r') as f:
|
85 |
+
for line in f:
|
86 |
+
ann = json.loads(line)
|
87 |
+
file_name = ann['file_name']
|
88 |
+
prompt = ann['text']
|
89 |
+
image_path = os.path.join(dataset_path, file_name)
|
90 |
+
|
91 |
+
# Read image and convert to base64
|
92 |
+
with open(image_path, 'rb') as img_f:
|
93 |
+
image_bytes = img_f.read()
|
94 |
+
encoded = base64.b64encode(image_bytes).decode()
|
95 |
+
mime_type = "image/png"
|
96 |
+
image_data = f"data:{mime_type};base64,{encoded}"
|
97 |
+
|
98 |
+
dataset.append({
|
99 |
+
'image': image_data,
|
100 |
+
'prompt': prompt
|
101 |
+
})
|
102 |
+
else:
|
103 |
+
# If annotations file not found
|
104 |
+
return None, []
|
105 |
+
|
106 |
+
return dataset_name, dataset
|
107 |
+
except Exception as e:
|
108 |
+
print(f"Error loading dataset: {e}")
|
109 |
+
return None, []
|
110 |
|
111 |
def display_dataset_html(dataset):
|
112 |
if dataset:
|
|
|
130 |
datasets = gr.State({})
|
131 |
current_dataset_name = gr.State("")
|
132 |
dataset_selector = gr.Dropdown(label="Select Dataset", interactive=True)
|
133 |
+
entry_selector = gr.Dropdown(label="Select Entry to Edit/Delete")
|
134 |
dataset_html = gr.HTML()
|
135 |
message_box = gr.Textbox(interactive=False, label="Message")
|
136 |
|
|
|
142 |
create_button = gr.Button("Create Dataset")
|
143 |
with gr.Column():
|
144 |
gr.Markdown("### Upload Existing Dataset")
|
145 |
+
upload_input = gr.File(label="Upload Dataset Zip", type="file")
|
146 |
upload_button = gr.Button("Upload Dataset")
|
147 |
|
148 |
def create_dataset(name, datasets):
|
|
|
163 |
if zip_file is None:
|
164 |
return gr.update(), "Please upload a zip file."
|
165 |
dataset_name, dataset = load_dataset_from_zip(zip_file)
|
166 |
+
if dataset_name is None:
|
167 |
+
return gr.update(), "Failed to load dataset from zip file."
|
168 |
if dataset_name in datasets:
|
169 |
return gr.update(), f"Dataset '{dataset_name}' already exists."
|
170 |
datasets[dataset_name] = dataset
|