thoristhor commited on
Commit
61c9e21
·
1 Parent(s): f2ad269

Delete quiz_gen_new3.py

Browse files
Files changed (1) hide show
  1. quiz_gen_new3.py +0 -124
quiz_gen_new3.py DELETED
@@ -1,124 +0,0 @@
1
- import streamlit as st
2
- from textwrap3 import wrap
3
- from flashtext import KeywordProcessor
4
- import torch, random, nltk, string, traceback, sys, os, requests, datetime
5
- import numpy as np
6
- import pandas as pd
7
- from transformers import T5ForConditionalGeneration,T5Tokenizer
8
- import pke
9
- from helper import postprocesstext, summarizer, get_nouns_multipartite, get_keywords,\
10
- get_question, get_related_word, get_final_option_list, load_raw_text
11
-
12
-
13
- def set_seed(seed: int):
14
- random.seed(seed)
15
- np.random.seed(seed)
16
- torch.manual_seed(seed)
17
- torch.cuda.manual_seed_all(seed)
18
-
19
- set_seed(42)
20
-
21
- @st.cache(allow_output_mutation = True)
22
- def load_model():
23
- nltk.download('punkt')
24
- nltk.download('brown')
25
- nltk.download('wordnet')
26
- nltk.download('stopwords')
27
- nltk.download('wordnet')
28
- nltk.download('omw-1.4')
29
- summary_mod_name = os.environ["summary_mod_name"]
30
- question_mod_name = os.environ["question_mod_name"]
31
- summary_model = T5ForConditionalGeneration.from_pretrained(summary_mod_name)
32
- summary_tokenizer = T5Tokenizer.from_pretrained(summary_mod_name)
33
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
34
- summary_model = summary_model.to(device)
35
- question_model = T5ForConditionalGeneration.from_pretrained(question_mod_name)
36
- question_tokenizer = T5Tokenizer.from_pretrained(question_mod_name)
37
- question_model = question_model.to(device)
38
- return summary_model, summary_tokenizer, question_tokenizer, question_model
39
-
40
- from nltk.corpus import wordnet as wn
41
- from nltk.tokenize import sent_tokenize
42
- from nltk.corpus import stopwords
43
-
44
- def csv_downloader(df):
45
- res = df.to_csv(index=False,sep="\t").encode('utf-8')
46
- st.download_button(
47
- label="Download logs data as CSV separated by tab",
48
- data=res,
49
- file_name='df_quiz_log_file_v1.csv',
50
- mime='text/csv')
51
-
52
- def load_file():
53
- """Load text from file"""
54
- uploaded_file = st.file_uploader("Upload Files",type=['txt'])
55
- if uploaded_file is not None:
56
- if uploaded_file.type == "text/plain":
57
- raw_text = str(uploaded_file.read(),"utf-8")
58
- return raw_text
59
-
60
- st.markdown('![Visitor count](https://shields-io-visitor-counter.herokuapp.com/badge?page=https://share.streamlit.io/https://huggingface.co/spaces/aakashgoel12/getmcq&label=VisitorsCount&labelColor=000000&logo=GitHub&logoColor=FFFFFF&color=1D70B8&style=for-the-badge)')
61
-
62
- # Loading Model
63
- summary_model, summary_tokenizer, question_tokenizer, question_model =load_model()
64
-
65
- # App title and description
66
- st.title("Exam Assistant")
67
- st.write("Upload text, Get ready for answering autogenerated questions")
68
-
69
- # Load file
70
- st.text("Disclaimer: This app stores user's input for model improvement purposes !!")
71
-
72
- # Load file
73
-
74
- default_text = load_raw_text()
75
- raw_text = st.text_area("Enter text here", default_text, height=250, max_chars=1000000, )
76
-
77
- # raw_text = load_file()
78
- start_time = str(datetime.datetime.now())
79
- if raw_text != None and raw_text != '':
80
- summary_text = summarizer(raw_text,summary_model,summary_tokenizer)
81
- ans_list = get_keywords(raw_text,summary_text)
82
- #print("Ans list: {}".format(ans_list))
83
- questions = []
84
- option1=[]
85
- option2=[]
86
- option3=[]
87
- option4=[]
88
- for idx,ans in enumerate(ans_list):
89
- #print("IDX: {}, ANS: {}".format(idx, ans))
90
- ques = get_question(summary_text,ans,question_model,question_tokenizer)
91
- other_options = get_related_word(ans)
92
- final_options, ans_index = get_final_option_list(ans,other_options)
93
- option1.append(final_options[0])
94
- option2.append(final_options[1])
95
- option3.append(final_options[2])
96
- option4.append(final_options[3])
97
- if ques not in questions:
98
- html_str = f"""
99
- <div>
100
- <p>
101
- {idx+1}: <b> {ques} </b>
102
- </p>
103
- </div>
104
- """
105
- html_str += f' <p style="color:Green;"><b> {final_options[0]} </b></p> ' if ans_index == 0 else f' <p><b> {final_options[0]} </b></p> '
106
- html_str += f' <p style="color:Green;"><b> {final_options[1]} </b></p> ' if ans_index == 1 else f' <p><b> {final_options[1]} </b></p> '
107
- html_str += f' <p style="color:Green;"><b> {final_options[2]} </b></p> ' if ans_index == 2 else f' <p><b> {final_options[2]} </b></p> '
108
- html_str += f' <p style="color:Green;"><b> {final_options[3]} </b></p> ' if ans_index == 3 else f' <p><b> {final_options[3]} </b></p> '
109
- html_str += f"""
110
- """
111
- st.markdown(html_str , unsafe_allow_html=True)
112
- st.markdown("-----")
113
- questions.append(ques)
114
- output_path = "results/df_quiz_log_file_v1.csv"
115
- res_df = pd.DataFrame({"TimeStamp":[start_time]*len(ans_list),\
116
- "Input":[str(raw_text)]*len(ans_list),\
117
- "Question":questions,"Option1":option1,\
118
- "Option2":option2,\
119
- "Option3":option3,\
120
- "Option4":option4,\
121
- "Correct Answer":ans_list})
122
- res_df.to_csv(output_path, mode='a', index=False, sep="\t", header= not os.path.exists(output_path))
123
- # st.dataframe(pd.read_csv(output_path,sep="\t").tail(5))
124
- csv_downloader(pd.read_csv(output_path,sep="\t"))