thoristhor commited on
Commit
f2ad269
·
1 Parent(s): aad243e

quiz_gen_new3.py

Browse files
Files changed (1) hide show
  1. quiz_gen_new3.py +124 -0
quiz_gen_new3.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from textwrap3 import wrap
3
+ from flashtext import KeywordProcessor
4
+ import torch, random, nltk, string, traceback, sys, os, requests, datetime
5
+ import numpy as np
6
+ import pandas as pd
7
+ from transformers import T5ForConditionalGeneration,T5Tokenizer
8
+ import pke
9
+ from helper import postprocesstext, summarizer, get_nouns_multipartite, get_keywords,\
10
+ get_question, get_related_word, get_final_option_list, load_raw_text
11
+
12
+
13
+ def set_seed(seed: int):
14
+ random.seed(seed)
15
+ np.random.seed(seed)
16
+ torch.manual_seed(seed)
17
+ torch.cuda.manual_seed_all(seed)
18
+
19
+ set_seed(42)
20
+
21
+ @st.cache(allow_output_mutation = True)
22
+ def load_model():
23
+ nltk.download('punkt')
24
+ nltk.download('brown')
25
+ nltk.download('wordnet')
26
+ nltk.download('stopwords')
27
+ nltk.download('wordnet')
28
+ nltk.download('omw-1.4')
29
+ summary_mod_name = os.environ["summary_mod_name"]
30
+ question_mod_name = os.environ["question_mod_name"]
31
+ summary_model = T5ForConditionalGeneration.from_pretrained(summary_mod_name)
32
+ summary_tokenizer = T5Tokenizer.from_pretrained(summary_mod_name)
33
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
34
+ summary_model = summary_model.to(device)
35
+ question_model = T5ForConditionalGeneration.from_pretrained(question_mod_name)
36
+ question_tokenizer = T5Tokenizer.from_pretrained(question_mod_name)
37
+ question_model = question_model.to(device)
38
+ return summary_model, summary_tokenizer, question_tokenizer, question_model
39
+
40
+ from nltk.corpus import wordnet as wn
41
+ from nltk.tokenize import sent_tokenize
42
+ from nltk.corpus import stopwords
43
+
44
+ def csv_downloader(df):
45
+ res = df.to_csv(index=False,sep="\t").encode('utf-8')
46
+ st.download_button(
47
+ label="Download logs data as CSV separated by tab",
48
+ data=res,
49
+ file_name='df_quiz_log_file_v1.csv',
50
+ mime='text/csv')
51
+
52
+ def load_file():
53
+ """Load text from file"""
54
+ uploaded_file = st.file_uploader("Upload Files",type=['txt'])
55
+ if uploaded_file is not None:
56
+ if uploaded_file.type == "text/plain":
57
+ raw_text = str(uploaded_file.read(),"utf-8")
58
+ return raw_text
59
+
60
+ st.markdown('![Visitor count](https://shields-io-visitor-counter.herokuapp.com/badge?page=https://share.streamlit.io/https://huggingface.co/spaces/aakashgoel12/getmcq&label=VisitorsCount&labelColor=000000&logo=GitHub&logoColor=FFFFFF&color=1D70B8&style=for-the-badge)')
61
+
62
+ # Loading Model
63
+ summary_model, summary_tokenizer, question_tokenizer, question_model =load_model()
64
+
65
+ # App title and description
66
+ st.title("Exam Assistant")
67
+ st.write("Upload text, Get ready for answering autogenerated questions")
68
+
69
+ # Load file
70
+ st.text("Disclaimer: This app stores user's input for model improvement purposes !!")
71
+
72
+ # Load file
73
+
74
+ default_text = load_raw_text()
75
+ raw_text = st.text_area("Enter text here", default_text, height=250, max_chars=1000000, )
76
+
77
+ # raw_text = load_file()
78
+ start_time = str(datetime.datetime.now())
79
+ if raw_text != None and raw_text != '':
80
+ summary_text = summarizer(raw_text,summary_model,summary_tokenizer)
81
+ ans_list = get_keywords(raw_text,summary_text)
82
+ #print("Ans list: {}".format(ans_list))
83
+ questions = []
84
+ option1=[]
85
+ option2=[]
86
+ option3=[]
87
+ option4=[]
88
+ for idx,ans in enumerate(ans_list):
89
+ #print("IDX: {}, ANS: {}".format(idx, ans))
90
+ ques = get_question(summary_text,ans,question_model,question_tokenizer)
91
+ other_options = get_related_word(ans)
92
+ final_options, ans_index = get_final_option_list(ans,other_options)
93
+ option1.append(final_options[0])
94
+ option2.append(final_options[1])
95
+ option3.append(final_options[2])
96
+ option4.append(final_options[3])
97
+ if ques not in questions:
98
+ html_str = f"""
99
+ <div>
100
+ <p>
101
+ {idx+1}: <b> {ques} </b>
102
+ </p>
103
+ </div>
104
+ """
105
+ html_str += f' <p style="color:Green;"><b> {final_options[0]} </b></p> ' if ans_index == 0 else f' <p><b> {final_options[0]} </b></p> '
106
+ html_str += f' <p style="color:Green;"><b> {final_options[1]} </b></p> ' if ans_index == 1 else f' <p><b> {final_options[1]} </b></p> '
107
+ html_str += f' <p style="color:Green;"><b> {final_options[2]} </b></p> ' if ans_index == 2 else f' <p><b> {final_options[2]} </b></p> '
108
+ html_str += f' <p style="color:Green;"><b> {final_options[3]} </b></p> ' if ans_index == 3 else f' <p><b> {final_options[3]} </b></p> '
109
+ html_str += f"""
110
+ """
111
+ st.markdown(html_str , unsafe_allow_html=True)
112
+ st.markdown("-----")
113
+ questions.append(ques)
114
+ output_path = "results/df_quiz_log_file_v1.csv"
115
+ res_df = pd.DataFrame({"TimeStamp":[start_time]*len(ans_list),\
116
+ "Input":[str(raw_text)]*len(ans_list),\
117
+ "Question":questions,"Option1":option1,\
118
+ "Option2":option2,\
119
+ "Option3":option3,\
120
+ "Option4":option4,\
121
+ "Correct Answer":ans_list})
122
+ res_df.to_csv(output_path, mode='a', index=False, sep="\t", header= not os.path.exists(output_path))
123
+ # st.dataframe(pd.read_csv(output_path,sep="\t").tail(5))
124
+ csv_downloader(pd.read_csv(output_path,sep="\t"))