File size: 3,218 Bytes
9b5b26a
abb8566
 
 
 
 
9b5b26a
 
 
c19d193
6aae614
8fe992b
9b5b26a
 
abb8566
 
 
 
 
 
 
 
 
 
9b5b26a
abb8566
9b5b26a
abb8566
9b5b26a
abb8566
 
9b5b26a
abb8566
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
e121372
bf6d34c
 
29ec968
fe328e0
13d500a
8c01ffb
 
9b5b26a
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
abb8566
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool

from bs4 import BeautifulSoup
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool

from Gradio_UI import GradioUI

def categorize_content(text, categories):
    """Categorizes text using NLP and TF-IDF similarity."""
    vectorizer = TfidfVectorizer()
    category_texts = list(categories.values())
    category_names = list(categories.keys())
    tfidf_matrix = vectorizer.fit_transform([text] + category_texts)
    similarities = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:]).flatten()
    return category_names[similarities.argmax()] if similarities.any() else "Uncategorized"


@tool
def scrape_webpage(url:str, categories:dict = None)-> str: #it's import to specify the return type
    #Keep this format for the description / args / args description but feel free to modify the tool
    """A tool that scrapes a webpage and categorizes the content using NLP.
    Args:
        url: the first argument
        categories: A dictionary with category names as keys and example text as values.
    """
    try:
        response = requests.get(url, timeout=10)
        response.raise_for_status()
        soup = BeautifulSoup(response.text, "html.parser")
        text_content = ' '.join(soup.stripped_strings)
        if categories:
            category = categorize_content(text_content, categories)
            return f"The following text content {text_content} was scaped from {url} and categorized as: {category}"
        else:
            return "The following text content was scaped: %s" % text_content
    except requests.RequestException as e:
        return f"Error fetching webpage: {str(e)}"

@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer, scrape_webpage], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()