Spaces:
Sleeping
Sleeping
feat: :sparkles: add scraper as tool
Browse files
app.py
CHANGED
@@ -1,4 +1,9 @@
|
|
1 |
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
|
|
|
|
|
|
|
|
|
|
|
2 |
import datetime
|
3 |
import requests
|
4 |
import pytz
|
@@ -7,16 +12,36 @@ from tools.final_answer import FinalAnswerTool
|
|
7 |
|
8 |
from Gradio_UI import GradioUI
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
@tool
|
12 |
-
def
|
13 |
#Keep this format for the description / args / args description but feel free to modify the tool
|
14 |
-
"""A tool that
|
15 |
Args:
|
16 |
-
|
17 |
-
|
18 |
"""
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
@tool
|
22 |
def get_current_time_in_timezone(timezone: str) -> str:
|
@@ -51,7 +76,7 @@ with open("prompts.yaml", 'r') as stream:
|
|
51 |
|
52 |
agent = CodeAgent(
|
53 |
model=model,
|
54 |
-
tools=[final_answer], ## add your tools here (don't remove final answer)
|
55 |
max_steps=6,
|
56 |
verbosity_level=1,
|
57 |
grammar=None,
|
|
|
1 |
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
|
2 |
+
|
3 |
+
from bs4 import BeautifulSoup
|
4 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
+
|
7 |
import datetime
|
8 |
import requests
|
9 |
import pytz
|
|
|
12 |
|
13 |
from Gradio_UI import GradioUI
|
14 |
|
15 |
+
def categorize_content(text, categories):
|
16 |
+
"""Categorizes text using NLP and TF-IDF similarity."""
|
17 |
+
vectorizer = TfidfVectorizer()
|
18 |
+
category_texts = list(categories.values())
|
19 |
+
category_names = list(categories.keys())
|
20 |
+
tfidf_matrix = vectorizer.fit_transform([text] + category_texts)
|
21 |
+
similarities = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:]).flatten()
|
22 |
+
return category_names[similarities.argmax()] if similarities.any() else "Uncategorized"
|
23 |
+
|
24 |
+
|
25 |
@tool
|
26 |
+
def scrape_webpage(url:str, categories:dict = None)-> str: #it's import to specify the return type
|
27 |
#Keep this format for the description / args / args description but feel free to modify the tool
|
28 |
+
"""A tool that scrapes a webpage and categorizes the content using NLP.
|
29 |
Args:
|
30 |
+
url: the first argument
|
31 |
+
categories: A dictionary with category names as keys and example text as values.
|
32 |
"""
|
33 |
+
try:
|
34 |
+
response = requests.get(url, timeout=10)
|
35 |
+
response.raise_for_status()
|
36 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
37 |
+
text_content = ' '.join(soup.stripped_strings)
|
38 |
+
if categories:
|
39 |
+
category = categorize_content(text_content, categories)
|
40 |
+
return f"The following text content {text_content} was scaped from {url} and categorized as: {category}"
|
41 |
+
else:
|
42 |
+
return "The following text content was scaped: %s" % text_content
|
43 |
+
except requests.RequestException as e:
|
44 |
+
return f"Error fetching webpage: {str(e)}"
|
45 |
|
46 |
@tool
|
47 |
def get_current_time_in_timezone(timezone: str) -> str:
|
|
|
76 |
|
77 |
agent = CodeAgent(
|
78 |
model=model,
|
79 |
+
tools=[final_answer, scrape_webpage], ## add your tools here (don't remove final answer)
|
80 |
max_steps=6,
|
81 |
verbosity_level=1,
|
82 |
grammar=None,
|